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Abstract

Two micromechanical models were developed to investigate the thermal expansion of

graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material

properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber

distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder

treated as a two-phase composite with a characteristic fiber volume fraction. By altering the fiber volume

fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can

be investigated using this model. The second model is based on the inelastic lamination theory. By varying

the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness

direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae)

are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is

used to model the inelastic response of the copper matrix at the micro-level.

The models were used to characterize the effects of nonuniform fiber distribution on the thermal

expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-flee

temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has

little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-

matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the

through-thickness direction of a laminate was more significant, but only approached that of the stress-free

temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with

experimental thermal expansion data indicated the need for more accurate characterization of the graphite

fiber thermo-mechanical properties. Correlation with cyclic data revealed the presence of a mechanism not

considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that

has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular

specimens had little effect on the predicted thermal expansion.
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A composite material is formed by reinforcing one material with another. The result is a new

material with properties distinct from either of the constituents. Composites are classified by the type of

matrix material (polymer, ceraraic, or metal) and by the type of reinforcements (particles, chopped fibers,

or continuous fibers). Continuous fiber-reinforced metal matrix composites consist of a metal matrix rein-

forced with continuous fibers. This type of composite may have unidirectional fibers only, or it may have

layers with fibers oriented in different directions. The latter type of fiber-reinforced composite is referred

to as a laminate.

Figure 1.1 shows a micrograph of unidirectional graphite/copper (Gr/Cu), a continuous fiber-

reinforced metal matrix composite, with the long fiber direction perpendicular to the page. Composite

materials are desirable for many applications because they are generally stiff and strong but low in

density. This is the case for Gr/Cu. Copper is displaced by the less dense graphite fibers, so the

composite is lighter than pure copper. In addition, the fibers are stiffer and stronger than pure copper in

the long fiber direction, thus the composite is stiffer and stronger in this direction as well.

In recent years, many new applications have become apparent for composite materials, partially

fueled by reduced manufacturing costs and improved quality. However, use of composites actually dates
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Figure1.h Micrographofacross-sectionofunidirectionalGr/Cu.

areas are copper. Courtesy of S.M. DeXrmcent

100 um

Dark O.rcles are graphite fibers, fight

backalonglime. Wood, one of the first _ materials used by man, isanaturaloomposite. It

consists of lignin, an amorphous polymer, reinforced with cellulose fibers (Ashby and Jones, 1980). One

of the oldest and most common man-made oomposit_ is reinforced concrete. Steel rods are imbedded in

the concrete in the direction of loading to increase the strength of the material. Fiberglass is a good

example of another composite that has been in use for decades. This and other polymer matrix composi_

are easy to manufacture because of the low melting or softening temperatures of polymers. Thus, polymer

matrix composites have been used extensively for applications including boat components and sporting

goods. Ceramic matrix comlx_tes have also found a niche in the sporting goods industry.

Many of the current generation high-performance aircraft are _ partly f_m

composite materials. Examples include the boron/q)oxy horizontal stabilizer of the Gnunman F-14,and

the vertical and horizontal stabilizers of the McDonneLl-Douglas F-15 (Jones, 1975). The main drawback



of polymer matrix composites is the same characteristic that makes them easy to manufacture; namely

their low softening temperatme. Thus for elevated temperature applications for aircraft and reentry

vehicles, metal matrix composites are desirable. Metal matrix composites are much more difficult to

manufacture, but the weight savings over un-reinforced metals can be dramatic. This is why there is

currently much research focusing on metal matrix composites such as silicon carbide/titanium. This and

other metal matrix composites may potentially become major structural materials for aerospace

applications well into the next century.

One might wonder why entire structures are not made from the reinforcement material since it

provides superior strength and sti_ess and lower density than unreinforced metals. The answer is that

reinforcement materials such as graphite, boron, and silicon carbide are ceramics. Thus they are brittle

and susceptible to rapid crack growth and fyacture. When drawn into fibers, many of these materials have

oriented microstructures, giving them highly favorable properties in one direction at the expense of the

properties in the other directions. In addition, some inclusion materials, such as graphite, oxidize

significantly in air at temperatures well below the melting point of matrix metals. By combining fibers

with metals, the most desirable properties of both materials are preserved while many drawbacks

associated with the individual materials are eliminated.

C-r/Cu is unique from other metal matrix composites in several ways. Copper exhibits the

highest thermal conductivity of any metal, but it also has a high density and a high coefficient of thermal

expansion (CTE). By reinforcing copper with graphite fibers, the density and longitudinal thermal

expansion are significantly reduced while the thermal conductivity remains quite high. This unique

combination of features has made Gr/Cu a leading candidate material for high heat transfer applications

in which low weight is a design consideration. These applications include heat exchangers for spacecraft

and reentry vehicles. The leading edges of the airfoil of the proposed national aerospace plane (NASP)

were to reach temperatures on the order of 1450° C as the vehicle reentered the atmosphere (Upadhya,

1992). NASA proposed to actively cool the leading edges with a hyctrogen slurry. To make this process

efficient, the material from which the heat exchanger is manufactured should have a high thermal

conductivity. A lower density, high thermal conductivity material such as Gr/Cu can save weight,



4

allowingreenUs,vehicleslike the NASP to operate more economically. The same holds for spacect_

power thermal management systems. As an example, for the SP-100 nuclear power system, the mass of

the radiators may account for as much as 90% of the total mass of the power system (Ellis, 1992). Using

Gr/Cu for this application will save weight. Thus, NASA is interested in developing Gr/Cu composites

and better understanding their thermo-mechamcal behavior. The thermal expansion of this material is of

particular importance since it is likely that Gr/Cu components will experience a wide range of

temperatures over their lifetimes.

Composites may seem ideal for many applications, but drawbacks do exist which depend on the

particular material system. For metal matrix composites such as Gr/Cn, these drawbacks include the

difficulty and the expense of manufacturing them. The fabrication of Gr/Cu has been the topic of much

research at NASA Lewis. Bundmg between the fiber and the matrix has been a problem because graphite

surfaces are not easily wetted by copper. Evidence suggests that by adding a small amount of chromium

to the copper matrix, the fiber/matrix bonding can be significantly improved (DeVmcent, 1994a).

Non-uniform fiber distribution has been identified as another problem that may affect the

properties and performance of Gr/Cu. For a composite to possess optimal properties, the reinforcement

phase should typically be distributed as uniformly as possible. Regions with a low density of inclusions

behave more like the matrix material, and they may potentially degrade the overall behavior of the

composite. An exception to this rule is the emerging class of functionally graded composites in which the

distribution of the reinforcement phase is deliberately tailored for specific applications. Micrographs of

the Gr/Cu specimens tested for this investigation revealed that the material may contain large channels of

copper with few fibers. Figure 1.2 shows these channels in a Gr/Cu _. The current investigation

seeks to determine the affects of these copper channels, and non-uniform fiber distribution in general, on

the thermal expansion of Gr/Cu. The thermal expansion of this material is important not only because of

the large change in temperature it experiences during fabrication, but also because of the hundreds of

thermal cycles that it will experience as part of a spacecraft power system or a reentry vehicle.

This thesis outlines the development and implementation of two micromechanical models that

were used to investigate the thermal expansion of Gr/Cu composites with non-uniform fiber distribution.
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Figure 1.2: M/crograph of a cross-section of a unidirectional Gr/Cu thermal expansion _en. Note

the presence of large copper chnnnelS. Courtesy of S.M. DeV_momt.

The first model combines elements of the multiple concentric cylinder model (Pindera et al., 1992, 1993)

with the method of cells (Aboudi, 1989) to simulate the thermal expansion behavior of congxmites with a

radial variation in fiber distn_-fion. This model will be referred to as CCMICRON. Figure 1.3a shows a

composite with radially nonuniform fiber distn3mlion that could be modeled with CCMICRON, and

Figure 1.3b illustrates how the nfi_ at a point in a cylinder can be modeled with the method of

cells. The second model combines elements of the classical lamination theory (Jones, 1975) with the

method of cells to allow fiber distn]_axtion variation in the through-thickness direction. This model will

be referred to as MCLANL Figure 1.4a shows a composite with fiber distribution that is nonuniform in

the through-thickness direction that could be modeled with MCLAM, and Figure lab illustrates how the

mi_ at a point in a layer can be modeled with the method of ceils.

The method of cells is employed to evaluate the effective properties of each composite cylinder in

the case of CCMICRON, and each composite layer in MCLAM. Since the stresses that arise in the

comtx_site due to the thermal expansion mismatch between the fiber and matrix phases can cause yielding

in the maa_ an inelastic constitutive theory is needed to model the thermal expansion accurately. In

both models, the inelastic constitutive theory used is classical incremental plasticity. Classical
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Figure 1.3a: A composite with radially nonuniform fiber distribution.

X)

Figure 1.3b: The micro-scale geometry of inhomogeneous cylinders in an assemblage of concentric
cylinders represented by the method of cells.
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Figure 1.4a: A composite with nonuniform fiber distribu_on in a Cartesian direction.

Figure 1.4b: The micro-scale geometry of a laminate represented by the method of cells.



incremental plasticity is employed to model the response of the copper matrix at the micro-level (the

subceU level). The strains that arise at a particular location in a composite cylinder or a composite layer

are considered to be acting on a repeating unit cell consisting of a fiber subceU and three matrix subcells.

Yielding can then occur in any of the three matrix subeells in the unit cell, and if it does, the inelastic

strains that arise at the particular location in the composite cylinder or composite layer are calculated

using the method of cells.

Although a fair amount of work has been done to investigate the effect of nonuniform fiber

disU'ibution on the mechanical properties of composites, relatively little effort has been expended to

characterize the thermal expansion behavior of composites with nonuniform microbes. The next

chapter reviews the work done to date on characterizing the effects of nonuniform fiber distribution on the

thermo-mechanical response of composites. Most of the work has involved modeling, but several purely

experimental investigations also have been conducted. By examining the work that has been done to date

on this subject, the justification for the present investigation becomes apparent.



2.1 Overview

Much effort has been expended in modeling the thermal and mechanical response of composites

during the past 30 years. As an increasing number of factors that affect the response of these materials

became apparent, different models were developed that take these factors into account. These factors

include anisotropy and temperature-dependent properties of the phases, plasticity of the matrix, inclusion

microstructure, imperfect interfacial bonding, complex fiber geometries, and inhomogeneous fiber

distribution.

The idea of investigating the effect of the proximity or arrangement of inclusions on the overall

composite response while holding the fiber volume fraction constant is not particularly new. In 1967, an

elastic finite difference model was used by Adams and Doner (1967a) to investigate transverse normal

loading of a unidirectional continuous-fiber composite. A doubly periodic rectangular array of fibers in a

matrix was considered, and the shape and volume fraction of the fibers was varied. This model was used

again by the same authors to examine longitudinal shear loading of a unidirectional composite (Adams

and Doner, 1967b). This latter investigation considered the effect of fiber distribution by modeling the

composite as a square array of fibers in the matrix and comparing the resulting predicted composite shear
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modulus with the predictions of the composite cylinder assemblage model developed by Hashin and Rosen

(1964). It was determined that the square packing an-angement results m a higher shear modulus when

the fiber volume fractions of both arrangements are identical. The investigation also pointed out the fact

that closely spaced fibers produce high stress concentrations in the matrix.

An early analytical investigation of the effects of different fiber arrangements was performed by

Pickett (1968). An elasticity formulation based on the Airy stress function approach was used to

determine the composite stiffness matrix for hexagonal and rectangular arrays of continuous

umdirectional fibers in an elastic matrix. However, the emphasis was placed on varying the fiber volume

fi'action and the properties of the fiber, results were not presented for a variation in the packing

arrangement with all other relevant parameters held constant.

When continuous fiber composites are modeled, unit cells are usually constructed in the cross-

section perpendicular to the long fiber direction. Thus, long cylindrical fibers appeared as circles. For

short fiber or whisker composites, it is often preferable to consider a cross-section parallel to the long fiber

direction_ Thus, short cylinders appear as rectangles. This latter type of cross-section was considered by

Chang and Conway (1968). An analytical approach was employed in this investigation. The plane strain

elasticity problem was solved for an infinite sheet containing column of short fibers subjected to normal

loading in the fiber direction. The representative volume element (RVE) considered consisted of the

rectangle of matrix between two adjacent aligned short fibers. A point-matching technique was used to

impose interracial continuity. The effect of different fiber distributions was examined by varying the

aspect ratio of the RVE, but in doing this, the amount of fiber in the RVE changed as well. Thus the

effect of the variation in fiber distribution or spacing was not isolated.

Adams (1970) performed a finite-element analysis of unidirectionalcontinuous-fiber composites

subjected to transverse normal loading taking into account the elastoplastic response of the matrix tmttl

failure. Analysis was performed for square and rectangular arrays of fibers which were modeled using a

unit cell consisting of a rectangle of matrix surrounding a single fiber (with appropriate boundary

conditions). The rectangular fiber array was oriented such that in the direction of the applied load the

fiber spacing was smaller (i.e., shorter sides of rectangle parallel to loading). The results showed that the
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stress concentration in the matrix and the transverse stiffness were far greater for the rectangular array

than the square array. It was also found that the square array exhibited more matrix yielding than the

rectangular array. This is expected since the rectangular array exhibits a higher fiber volume fractionin

the loading direction than does the sqnare array.

In recent years, several finite-element investigations have been performed that, like the early

work of Adams, take into account fiber distribution by use of different unit cells. Brockenbrough and

Suresh (1990) considered fiber shape and fiber packing in continuous fiber composites simultaneously

with unit cells representing square edge-packed square fibers, square diagonal-packed square fibers,

hexagonally-packed hexagonal fibers, square edge-packed circular fibers, and square diagonal-packed

circular fibers using the commercially available finite-element code ABAQUS. The matrix was

considered to be elastoplastic. The term "square edge-packed" refers to an array in which the squares

(whose corners are the fibers) are aligned such that the edges are parallel to the wansverse axes while

"square diagonal-packed" refers to the same array rotated 45 ° with respect to the transverse axes. The

results indicated that for axial tension, the packing arrangements have no effect since they are all

equivalent in this direction. In response to transverse tension, on the other hand, it was found that for

both square and circular fibers, the square diagonal-packed arrangements exhibited lower yield and more

plastic flow than the square edge-packed arrangements. This is in agreement with the results of Adams,

since in the transverse direction the square-diagonal packed arrangement has greater fiber spacing. The

square edge-packing has a higher effective fiber volume fraction in the transverse direction, thus the

properties of the fiber are more dominant.

A random distribution of 26 square fibers was also considered by the authors in the same study.

The longitudinal response of the random distribution was very close for all of the packing arrangements

considered, while the transverse response corresponded most closely to the response of the square edge-

packed square fibers. This suggests that square edge-packing best models the response of an actual

composite.

In a similar study performed by Brockenbrough et al. (1990) using the same finite-element

model, the response of square edge, square diagonal, triangular, and random arrays with continuous



12

circular fibers was investigated. Triangular-packing is equivalent to hexagonal-packing. Elastoplastic

stress-strain curves were generated for longitudinal and transwerse normal, as well as transverse shear

loading. For all packing arrangements the response to iengitudinal loading was elastic to failure and very

similar. The predicted response of composites with the different packing arrangements to transverse

normal and transwerse shear loading was presented in the form of elastic modulus, yield stress, and degree

of hardening. The square edge-packing arrangement provided the highest values for each of these

properties, followed by random packing, triangular-packing, and square diagonal-packing. Again,

expected trends were obtained given the fiber spacing in the loading direction. The response of the

random fiber distribution arrangements subjected to shear and transverse normal loading lay nearly

between the response of the square edge and triangular packing arrangements, but slightly closer

to that of the triangular-packing.

In another investigation performed by Nakamura and Suresh (1993) using ABAQUS and the

same packing arrangements, more random packing cases were considered, and the analysis was repeated

alter a cool-down from 520 °C to account for residual stresses. The matrix was treated as elastoplastic.

The trends due to fiber packing arrangement were the same as those found by Brockenbrough et al.

(1990). Transverse composite CTEs were also generated for the different configurations by taking the

average of the lateral expansions in the two transverse directions. The transverse CTEs were similar for

each packing arrangement, and no trend was apparent. Nakamura and Suresh also presented a single

value for the longitudinal CTE and stated that the value was independent of fiber packing arrangement.

Mueller (1994) developed a nonlinear finite-element model to investigate the effect of hexagonal

and square packing arrays on the predicted thermo-mechanical properties and the plastic behavior (for

transverse normal loading) of continuous boron/aluminum composites. It was found that the packing

arrangement did not significantly affect the predicted longitudinal mechanical properties but did

significantly affect the predicted transverse mechanical properties. Neither the predicted longitudinal nor

transverse CTE was affected by the packing arrangement. Comparison of the plastic behavior of the

composite predicted using the two packing arrangements revealed that the square packing arrangement

• exhibits significantly more hardening than the hexagonal packing arrangement.
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A different approach nsing a finite-element model was taken by Bigelow (1992) to examine the

effects of non-unifom fiber distribution. A rectangular packing arrangement of 16 continuous fibers was

considered. One fiber was then moved successively closer to one of its neighbors, until the two fibers were

touching. The magnitude of each stress component was then examined m the matrix region between the

two fibers. It was found that as the space between fibers decreased, each stress component became

proportionally greater in this matrix region. It was concluded that the stress concentration in the region

was sufficiently large to cause local yielding and fiber-matrix debondmg.

Wisnom (1990) used ABAQUS to examine the transverse tensile strength of unidirectional

continuous fiber composites using interface failure criteria to account for a weak fiber/matrix bond. The

matrix was treated as elastoplastic. One factor considered was the effect of two different packing

arrangements, namely rectangular and diamond (which is nearly hexagonal). The method by which the

fiber packing arrangement was accounted for was different m this case. Instead of considering two

different unit cells, the same unit cell was considered with different boundmy conditions to account for the

interaction of adjacent fibers. Results indicated that the different packing arrangements did not affect the

transverse strength significantly. This conclusion is disputed by Nakamura and Suresh (1993) who

observed significant shifts in the post-yield stress-strain response based on packing arrangement.

A finite-element model was also used by Hiemstra and Sottos (1993) to investigate the interaction

of four continuous fibers in an infinite matrix subjected to a uniform change m temperature. The spacing

among the fibers was varied, and it was found that smaller spacing of the fibers resulted in higher radial

and hoop stresses at the interface. Predictions of the location of the onset of microcracking were also

made, and they were shown to be consistent with experimental evidence.

Dragone and Nix (1990) addressed the non-uniform inclusion distribution problem using a finite-

element model to simulate creep in composites reinforced by long plate-like inclusions. The reinforcing

plates were considered to be infinite in one direction and finite in the other two. The load was applied in

the infimte plate direction, and power law creep was used to model the response of the matrix. The unit

cell, taken from a cross-section of the infinite direction, included eight plate-like inclusions initially

aligned in two columns of four. The middle two plate-like inclusions of each column were moved toward
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theoutsideof the unit cell to form new inclusion patterns. The results showed that increased shifting of

the plates caused higher stresses and creep in the matrix, while the stresses in the inclusions were highest

for the aligned arrangement.

A uniform distn'bution and two different clustering arrangements of aligned short fibers or

whiskers were modeled by Christman et al. (1989) using a finite-element approach. The unit cells were

taken from the plane parallel to the fiber direction. Normal loading parallel to the whiskers was

simulated, and stress-strain curves, hydrostatic stress distributions, and plastic strain distributions were

generated. The investigation indicated that higher degrees of clustering result in lower yielding and more

plastic flow.

Tvergaard (1990) also considered a unit cell from the plane parallel to the direction of aligned

short fibers. In this case the unit cell consisted of one quarter of a fiber and the surrounding matrix that

forms a rectangle. A finite-element model was employed to examine the response of short fiber

composites subjected to normal loading in the fiber direction. Fiber distribution was taken into account by

varying the aspect ratio of the unit cell, and in order to maintain a constant fiber volume fraction, the

aspect ratio of the fiber had to be changed as well. Thus as the fiber distribution was changed, the size

and shape of the fiber were changed as well. Therefore the effect of the fiber distribution was not isolated

in this investigation.

McHugh et al. (1993) used a materials science-based approach to investigate the response of a

particle reinforced composite. The authors employed an elastic-viscoplastic two-dimensional polycrystal

finite-element model based on crystallographic slip theory that considers individual hexagonal grains.

The reinforcement phase was introduced by replacing individual matrix grains with reinforcement

particles. Thus the inclusion arrangement could be easily altered. Two of the arrangements considered,

rectangular and rhombus, had the same inclusion volume fraction The model simulated the application of

normal uniform displacement. It was found that the rectangular arrangement produces higher strain

concentrations in the matrix near the inclusions. This higher degree of strum concentration allows the

strain field in a larger volume of the matrix to be relatively low in magnitude compared to the rhombus

arrangement during elastic deformation. Thus the rectangular arrangement provides a stronger constraint
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on plastic flow than the rhombus arrangement because a lower volume of the matrix is subjected to

concentrated strain.

The Ritz method, which deals with rninimi_in S potential energy, was used by Martin and Leissa

(1989) to determine the elastic stress and displacement fields in a unidirectional composite sheet with

variable fiber spacing. The fiber volume fraction could be varied as a function of the transverse direction.

The case analyzed was a parabolic variation in the fiber content with a high fiber volume fraction in the

middle and low fiber volume fraction at the edges of the sheet. Cases with several different boundary

conditions were examined. While most of the results presented focus on the convergence of the required

numeric integration, it was found that under transverse loading regions with low fiber volume content

experience greater displacements.

Pandey and Sherboume (1993) used potential energy minimi7ztion tO examine the prebuckling

stress fields in composite plates with inhomogeneous fiber distributions, which were introduced by

allowing the fiber volume content to vary in the transverse direction. It was found that a parabolic fiber

distribution, like that investigated by Martin and Leissa, is an effective way to increase the wan,werse

buckling load of composite plates.

A shear lag analysis was performed by Ochiai and Osamura (1989a) to examine the stress

concentration in a continuous-fiber composite plate with non-uniform fiber spacing and broken fibers.

The plate modeled consisted of two intact fibers on either side of three broken fibers in an elastoplastic

matrix subjected to in-plane shear. The positions of the intact fibers were varied, and the stresses in each

fiber were found. It was determined that the stress in the intact fibers was more dependent on the

proximity to the broken fibers than the proximity to another mtact fiber. Small spaces between the intact

fibers and the broken fibers lead to higher stresses in the intact fibers, as did large spaces between adjacent

intact fibers.

Ochiai and Osamura (1989b) subsequently used the same model to investigate the tensile

strength of a composite plate with non-uniform fiber spacing. In this case, the plate modeled consisted of

a repeating pattern of three fibers separated by large spaces followed by three fibers separated by small

spaces. The composite was subjected to longitudinal tension, and the strength of each fiber was taken
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from statistical data via a Monte Carlo method. The simulation was also performed on a composite plate

with the same number of fibers with uniform fiber spacing. Results indicated that due to stress

concentration in the regions with small spaces between fibers, the tensile strength of the composite with

non-uniform fiber spacing was smaller than the tensile strength of the composite with uniform fiber

spacing.

A shear lag model was also used by Karbhari and Wil_n_ (199 I) in an investigation to study

fiber-matrix de.bonding in a unidirectional continuous fiber composite under normal loading in the fiber

direction. Concentric cylinder geometry was considered. The formulation included a term to account for

the proximity of the nearest neighbor fiber to the one being considered in the concentric cylinder. This

term depends not only on the fiber volume fraction, but also on a packing factor. The packing factor can

be chosen to simulate different fiber packing arrangements. This investigation considered hexagonal and

square packing as well as the cylindrical RVE alone with no interaction from other fibers. The generated

results consist of the out-of-plane shear stress at the fiber-matrix muaface and the axial stress distribution

in the fiber. The effect of the two different packing arrangements was shown to be small, but there was a

difference between the two arrangements and the cylinder with no other fiber interaction. The inclusion

of the outside fibers in the analysis decreased the interracial shear stress as well as the longitudinal stress

in the fiber. This suggests that interactions from closely situated fibers can have a significant effect on the

stress field near the fibers.

In order to examine a different kind of variation in fiber spacing, Pagano and Brown (1993)

considered a concentric cytinder assemblage consisting of a fiber embedded in a matrix annulus which

was surrounded by composite annuti with 0.2 and 0.6 fiber volume fractions. Thus, the fiber was

surrounded by a composite with a fiber volume fraction that increased in a step-wise manner with

increasing radius. The interface was permitted to debond and radially propagating annular cracks were

introduced. A variational model was employed in which the fiber and matrix were treated as isotropic and

elastic to failure. The loading considered was combined uniform radial pressure and a uniform

temperature change. It was found that a lower fiber volume fraction near the fiber and the surrounding

matrix lead to a higher energy release rate, higher stresses, and thus faster crack propagation.
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PinderaandFreed(1992) considered a similar geometric arrangement. The concentric cylinder

assemblage model was combined with the method of ceils to model unidirectional fibers in an elastic

matrix with elastoplastic inclusions. The inclnsion vohune fraction in the matrix was varied radially from

0.0 at the fiber/matrix interface to 1.0 at the outer radins of the assemblage. The opposite case (high

inclusion content near the fiber, low inclusion content in the outer region) was also considered. Results

were generated in the form of residual stress distributions in the matrix due to a change in temperature of

-1425 °F. It was found that the radial, longitudinal, and hoop stresses were greater for the case of low

inclusion volume fraction near the fiber than the opposite case.

There have also been several experimental investigations into the effect of non-uniform fiber

distribution. MacKay (1990) used scanning electron microscopy to examine unidirectional Ti-15V-3Cr-

3A1-3Sn/SCS 6 SiC composites for microcracks. The microstructure of the composite was such that the

fibers were arranged in rows; very closely spaced in one direction, and widely spaced in the other. It was

found that microcracks due to cool down from fabrication temperatures were present in the matrix and in

the outer layer of the fiber in regions of close fiber spacing. These microcracks are believed to be caused

by large hoop stress concentrations in the aforementioned regions due to the close fiber spacing.

Komenda and Henderson (1993) performed creep tests on short alumina fibers in A1 - 0.3 Cu

matrix. In order to account for scatter in the results, a method to quantify the fiber spacing was

developed. A graphical method was used to represent a composite cross-section as fiber-rich zones and

fiber-free zones. Then a parameter called the coefficient of variation of fiber-free zone size was defined as

the standard deviation in the fiber-free zone size divided by the mean fiber-free zone size. This parameter

accounted for the scatter in the creep test results, and proved to be a more important factor than fiber

volume fraction alone for composites with fiber volume fractions of 0.1, 0.2, and 0.3.

Tensile tests were performed by Zhenhai et al. (1991) on unidirectional composites consisting of

bundles of graphite fibers in an aluminum matrix. At failure, the bundles, rather than the individual

fibers, pulled out of the matrix, resulting in a higher composite tensile strength than would be the case if

individual fibers pulled out. The bundle pull-out occurred because the bundle regions had high strength

clue to high local fiber volume fraction while the inter-bundie regions had low yield strengths. The
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bundles were more difficult to pull out than individual fibers, so the composite strength was greater

relative to similar comtx_tes with uniformly distributed fibers.

A recent series of papers authored by Rammerstorfer and co-workers deserves special attention.

This work, l_'aqormed in Austria, represents the only m-depth investigation into the effects of non-uniform

fiber distribution on the thermal expansion behavior of composites to date. As described below, it is all

based on finite-element analysis.

Siegmund et al. (1992) considered the thermal expansion behavior of a short fiber metal matrix

composite. Temperature-dependent properties were used for both the fiber and the matrix, and the matrix

was treated as elastoplastic. A rectangular unit cell consisting of one quarter of a fiber and the

surrounding matrix taken from a plane parallel to the long fiber direction (i.e., plane in which short fibers

appear as rectangles) was used for the finite-element analysis. Staggered and non-staggered fiber arrays

were analyzed separately with constant fiber volume fraction, constant fiber aspect ratio, and variable unit

cell aspect ratio. Varying the unit cell aspect ratio corresponds to moving the fibers closer together in one

direction and farther apart m the other. It was found that this variation had little effect on the thermal

expansion of the staggered arrangement, but in the non-staggered arrangement, larger unit cell aspect

ratios (i.e., larger end-to-end spacing of fibers, smaller side-to-side spacing of fibers) lead to a

significantly larger amount of thermal expansion. This can be explained by the fact that the staggered

array is more isotropic, and the shifting makes less of a difference than in the non-staggered array. In the

non-staggered array, the greater aspect ratio leads to a larger area of fiber-free matrix which causes the

greater thermal expansion.

BOhm et al. (1993) used a similar approach to model a wide range of fiber arrangements with

varying degrees of fiber staggering for short fiber metal matrix composites. The results were presented

only qualitatively. While the response to axial mechanical loading did not vary significantly with the

degree of staggering, the overall thermal expansion behavior did vary significantly. The fact that the

thermal expansion of the less staggered arrangements showed significant dependence on unit cell aspect

ratio (as was found in the previous investigation) was also mentioned. This investigation also addressed

modeling of unidirectional continuous fiber composites. Once again, a finite-element model treating the
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matrix as elastoplastic was used, but in this case the unit ceils were taken from the plane perpendicular to

the fiber direction. A hexagonal array, a square array, three perturbed square arrays, and a clustered

square array of fibers were considered. A great deal of numerical and graphical results were presented for

each fiber arrangement. The significant result from the stand point of the present investigation is that, as

was the case m Nakamura and Suresh (1993), the predicted longitudinal and transverse CTEs for the

continuous fiber composites showed little variation with fiber arrangement, and no trend was apparent.

Weissenbek and Rammerstoffer (1993) considered short fibers in staggered and unstaggered

arrangements with varying unit cell aspect ratios. As was the case in previous investigations, it was found

that the thermal expansion of the staggered arrangement had little dependence on the unit cell aspect

ratio, while the unstaggered arrangement showed a large degree of dependence. As the aspect ratio

changed, resulting in larger areas void of fibers and larger areas with a high density of fibers, the thermal

expansion increased.

Weissenbek et al. (1993) examined the thermal response of particulate composites by considering

several three-dimensional unit cells with the inclusions in simple cubic, face centered cubic, and base

centered cubic arrangements. Cubic, spherical, and cylindrical inclusions were modeled. A finite-

element model was used with the matrix treated as elastoplastic. Results indicated that the three particle

arrangements considered had no significant effect on the thermal expansion. Thus, this type of inclusion

non-uniformity in which packing arrangements are considered is different than shifting short fibers with

respect to each other, which was shown in the previous investigations to have a significant effect.
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2.2 Role of the Present Investigation

Themajorityoftheinvestigationsdiscussedin theprevioussectionexaminetheeffect of different

periodic fiber arrays on the mechanical properties, stress fields, and yield behavior of composites. Most of

the inclusions that were considered were continuous fibers or short fibers. Some of the investigations

account for the nonuniformity in the distribution of the fibers by considering random fiber packing

arrangements. Some considered a geometry taken from a plane perpendicular to the fiber direction, while

others considered a geometIy taken from a plane parallel to the fiber direction. Some of the work done in

the area is analytical and some is experimental, but most is numerical, based on the finite-element

approach. Typically, the investigations revealed that different fiber arrangements do have a significant

impact on the quantities being studied. Thus, in general, it can be inferred that nonuniform fiber

distribution may be an important factor influencing the response of composites.

Little work has been done to characterize the effect of nonuniform fiber distribution on the

thermal expansion of composites. Nakamum and Suresh (1993) presented composite CTEs for different

continuous fiber packing arrangements through the use of a finite-element model and found that the fiber

packing had no effect. A similar result was published by MueUer (1994). The finite-element

investigations by Rammerstorfer and co-workers addressed the thermal expansion of short fiber

composites with different periodic fiber arrangements and found the effect of the packing arrangement to

be significant. However, when they investigated different fiber packing arrangements in continuous fiber

composites, they too found no significant effect (B6hm et al., 1993).

The most important conclusion that follows from the work of Rammerstorfer and co-workers is

that regions in a composite with a lower density of inclusions than the overall composite can have a

significant effect on the thermal expansion of composites. Thus there is reason to believe that nonuniform

fiber distribution can affect the thermal expansion of continnous-fiber composites. A more thorough

investigation for continuous-fiber composites thus appears to be warranted. An analytical approach is

taken in the current investigation rather than the finite-element approach that has been used previously.

Thus the models developed herein can be used in a more eft]cient manner than those developed previously
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to examine similar effects. Furthermore, instead of accounting for fiber distribution through fiber packing

arrangements, the present investigation considers macroscopic nonuniform fiber distributions. As will be

demonstrated, this approach allows the s_ulation of the actual microstructures of individual composite

specimens. This cannot be done when considering micro-scale packing arrangements.

The model referred to as CCMICRON, developed in this thesis, is similar to the model of Pindera

and Freed (1992). It has some additional features, such as thermal cycling capability rather than a

monotonic temperature change, and it admits fibers that are transversely isotropic rather than simply

isotropic. The model referred to as MCLAM also has these features. Both models are used in this thesis

to examine the longitudinal and transverse thermal expansion of unidirectional Gr/Cu composites. The

fiber is treated as transversely isotropic and elastic, and the matrix is treated as isotropic and elastoplastic.

Both the fiber and the matrix are considered to have temperature-dependent properties. In CCMICRON,

the composite is modeled as a cylinder with a step-wise variable fiber volume fraction in the radial

direction, while in MCLAM the step-wise fiber volume fraction variation is in the through-thickness

direction. Residual stresses from fabrication are accounted for by cooling the composite from an assumed

stress-free consolidation temperature before heating it to simulate a thermal expansion test.

In summary, the effect of non-uniform fiber distribution on the thermal expansion of composites

has not been thoroughly addressed. The approach taken in the current investigation is different than the

previous investigations that addressed the thermal expansion of continuous fiber composites with different

fiber packing arrangements (Nakamura and Suresh, 1993; Mueller, 1994; B6hm et al., 1993). Instead of

varying the fiber packing arrangement, macro-scale nonuniformity is simulated by allowing the fiber

volume fraction to vary in a piece-wise manner in the radial or through-thickness direction. In addition,

efficient analytical models are developed in contrast to the finite-element models used previously.
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This chapteroutlinesthedevelopmentof the multiple concentric cylinder model, inelastic

lamination theory, the method of cells, and classical incremental plasticity theory. Section 3.4 describes

the procedure tlh-ough which the method of cells is incorporated into both the concentric cylinder model

and lamination theory to produce the computer codes CCMICRON and MCLAM, respectively. Section

3.5 discusses the solution procedure for the models. As discussed in Chapter 1, CCMICRON is capable of

modeling the thermal expansion of composites with radially nonuniform fiber distribution (see Figure

1.3). Similarly, MCLAM is capable of modeling the thermal expansion of composites with fiber

distribution that is nonuniform in the through-thickness direction (see Figure 1.4).
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3.1 Multiple Concentric Cylinder Model

Figure 3.1 illustrates the geometry that is the basis for the multiple concentric cylinder model

(Williams and Pindera, 1994b). The core of the assemblage of cylinders is denoted by the subscript or

superscript "1" and the outermost shell by "n". An arbitrary shell is denoted by "k" and has inner radius

rt_ t and outer radius rt. Traction and displacement components are assigned a "-" superscript at the inner

radius and a "+" superscript at the outer radius. The coordinate system is cylindrical with the origin at the

center of the assemblage. The displacement components m the coordinate directions (x, 8,r) are,

 ely, (u,v,w).

A displacement formulation is used to solve the boundary value problem with time independent

plasticity under the assumption of generalized plane strain. For axisymmetric loading, the displacement
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:::::::::::::::::::::::::::
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Figure 3.1: Multiple concentric cylinder geometry.
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components take the form

u = u(x) = 6ox, v = O, w = w(r) (3.1)

where 6 o is the uniform longitudinal strain throughout the assemblage. Utilizing standard strain-

displacement relations yields,

au w(r) aw(r)
6= = -- = 60, 600 = _, • 6,, = _ (3.2)

dr r dr

with the shear strain components identically zero. Applying the equations of equilibrium, recognizing that

the stress components, like the strain components, are at most functions of the coordinate r, yields,

do-_. ÷ o-,,. - o-oo = 0 (3.3)
dr r

as the only surviving equation.

It is desired to express the differential equation (3.3) in terms of displacements. To do so stress-

strain equations are needed. For an orthotropic material in cylindrical coordinates with thermal and

inelastic strains, but in the absence of shear strains, the stress-strain relations are given by,

= Co, i¢oo-¢_o-aoo(T- To)_ (3.4)

LC. co, c. t j

where _r. are total normal strains, 6;_ are plastic normal strains, and 0_. ( T- TO) are thermal strains. TO

denotes the reference temperature and T represents the current temperature.

Substituting (3.2) into (3.4) and then the result into (3.3), the following governing differential

equations are obtained in terms of displacements for the three cases:
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Transversely Isotropic, Elastic Layers (Cxo - C=, C m - C_, (2oo = (2..)

d2w 1 dw w
+ =0

dr 2 r dr r 2
(3.5a)

Orthotropic, Elastic Layers

d2w 1 dw

dr 2 r dr c. (co-c,.) ]r, C, --/ k -c- Eo+
(3.5b)

Transversely Isotropic, Inelastic Layers

d2w l dw
+

dr 2 r dr
_ _ dX'-_C_ ,w 1 (C,,-Ca) 6_ (r) +__7_ y %__ c_, (r)

r C,, ar z---- L_
z:x,O,r _:x,O,r

(3.5c)

The plastic strain distribution is assumed to be known at the start of each loading increment.

For thermal loading, there axe no tractions on the outside of the assemblage,

_ (r_) = 0 (3.6)

while continuity of inteffacial tractions and displacements requires that,

Uk_, (rk_, ) = uk (rk_, ), o_,_' (rk_, ) = o_,, (rk_, ). (3.7)

Further, for unconstrained thermal expansion, longitudinal equilibrium across the cross-sectional area of

the assemblage, A_, is satisfied by the condition

J ¢y: dA_ = O. (3.8)
a:

The solutions to the differential equations given in (3.5) are obtained in the form,
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Transversely Isotropic, Elastic Layers

w(r) = Air + A2
r

(3.9a)

Orthotropic, Elastic Layers

(c.
w(r) = Air _ + A2r -_ ÷ __r6o + E a_,r(T- To)-coo)

i=x,O,r

(3.9b)

1

Transversely hotropic, Inelastic Layers

l!Z(Cn+Ca)_(r,)r,dr,+rw (r ) = _r C,, 1. ,11--...i- C,,
x _ r ft.4 _=x,e,r

(rk_I)r - 1 + Air +
Z L--_C \ r

_=x.O,r

(3.9c)

where rt_ t < r < rt in the kth layer.

Thus the displacement field is known in terms of two unknown coefficients in each layer, A_t and

A_, the uniform longitudinal strain, 6 o, and the plastic strain distributions. Since the radial displacement

at the center of the assemblage must vanish, A_ must vanish for the solid core. With the use of the

boundary, continuity, and longitudinal equilibrium conditions, equations (3.6), (3.7), and (3.8),

respectively, the unknown coefficients and 6 o can be found. In the presence of plasticity, an iterative

procedure must be employed since the inelastic strains are dependent upon the unknown coefficients. The

procedure developed by Mendelson (1983) is used to accomplish this, as described in Section 3.5.
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It is desirable to reformulate the problem using the concept of a local stiffness matrix in order to

reduce the number of simultaneous equations in the solulion of the prescribed boundary-value problem.

This procedure replaces the coefficients A_ and A_ with the interfacial displacements w_ and w_ as the

basic unknowns in the system of equations obtained through the application of equations (3.6), (3.7), and

(3.8). The replacement entails evaluating w_ and w_ using equation (3.9) (i.e., successively substituting

r___ and rk for r ) and solving for A_ and A_. The resulting expressions are then used to determine the

strains in terms of the interfacial displacements from equation (3.2), and ultimately the interracial radial

stresses, o'-= and or:,, from (3.4). The results can be written in the form,

+ _6o+ (T-To)+ (3.1o)

In this expression k,_ are the components of the local stiffmess matrix and are functions of the geometry

and temperature-dependent elastic properties of the material. The vector elements f_t and _ account for

the thermal and plastic effects, respectively. Expressions for these elements for the three types of layers

described by (3.9) are given in Appendix A.

Restating the interracial traction and displacement continuity conditions, (3.7), in the notation of

(3. I0) yields,

d',,+ - oa',,+l- =0, k = 1,...,n-1 (3.] 1)

+

Wt = Wt = Wt. I. (3.12)

By applying (3. I I) and (3.12) to each imerface using (3.10), the following equations arise,

(/,_ +k_)w,+k_,,, +(I,_+/,,_)eo=-(/2 +A_)(r- to)- (g_+g,_) (3._3)

k_+'_e=-(/: +A_+')(r- ro)-(g_ +g_")

I! n,W II _ nk2_w.__+ k_ , + kz36o - f_ (T- To)- g2.
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Note that equation (3.6) and the fact that ,_ vanishes have been employed. The remaining equation

necessary to determine c o is given by the longitudinal equilibrium condition, (3.8), and it can be expressed

as_

(3.14)

when#f,,#_,_,_,n_,andn_a_egi_e_mtheAppen_xA.

Equations (3.13) and (3.14) can now be used to form the global stiffness matrix equation,

'k=+k,_ _,_= o
k__, k_+k,_ k,_,
o k_,

/,_, i,¢,

W I

W2

, _ mq

Wn

.C0

"A'+/?t"
(r- To)-'

Y;
Eft,

(3.15)

The global sti_ess matrix can be constructed by superposing the local sti_ess matrix of each layer along

thematrixdiagonalinanoverlappingfashion,and thenaddingarow and a column.

By reformulating the problem using the local global stiffness matrix approach the number of

equations that must be solved is reduced by nearly 50% for a large number of concentric cylinders in the

assemblage. Additionally, the global stiffness matrix is ideal for computer implementation because of its

simple construction for an arbitrary number of layers.
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3.2 Lamination Theory

Figure 3.2 illustrates the lamination theory geometry. The 1-2 coordinates refer to the principle

material coordinates of a lamina while the x-y coordinates refer to the laminate, as shown m Figure 3.3.

Jones (1975) provides a text book derivation of the lamination theory equations without considering

inelastic effects. Herein, the lamination theory equations are re-derived taking these effects into account.

Assuming plane stress, the constitutive equations for a lamina in the presence of inelastic strains

are:

_,l FQ,_Q;_oIF',-';-_,__-
_i=IQ_Q_oii_=-_-_
_J Lo o _JL r,2-4

(3.16)

where _,_ are the components of the reduced stiffness matrix for the kth layer and are functions of the

F LayerNumber

2

3
3

idplane

Y

S

H

Figure 3.2: Lamination theory geometry.
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Figure 3.3: The laminate (x=y) and principle material (1-2) coordinates in a laminated composite.

layer elastic properties (see Appendix B for equations), a_ and _ are the layer secant CTEs, AT is the

change in temperature from a reference temperature, and 6"_],65, and 7_ are the components of plastic

strain. The rotation equations given in Appendix B are applied to (3.16) resulting in the lamina

constitutive equations in the laminate coordinate system:

_k _k k p

the_: arethecomponentsoftherotatedreducedstiffnessmatrix,and eachvectorfrom(3.16)hasHere,

beenrotatedtox-ycoordinates.

AccordingtotheKJrchoff-Lovehypothesisforplates,a planecross-sectionthatisoriginally

•perpendiculartothemidplaneofthelaminate(anx-yplane)remainsplanarand perpendiculartothe
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midplane when the laminate is subjected to bending and extension. This hypothesis leads to the following

expressions for the in-plane displacement components, U and v :

- z a_w° a_w°u=u o _ V=Vo-Z_ (3.18)
8x 8y

where u o, v o , and w o are the midplane displacements. Using standard strain-displacement relations, the

laminate in-plane strain components are written as

where

-- 0 Z K'yG G +

r_ r ° _

(3.19)

r°J

euo
8x

a_Vo

8y
+

8y

I ]G =
K'xy

_2W o

8x 2

_2w___o

ey _

2 82w°

(3.20)

£ox, o and o£y, y_ are the midplane strains, and _'x, K'y, and /¢'_ are the midplane curvatures. Combining

(3.17) and (3.19)yields

(3.21)

The resultant laminate forces per unit length (Nx, Ny, and N_) and moments per unit length

(M x , My, and M_y ) are obtained by integrating messes over the laminate thickness H. The integration

is performed in a piecewise manner across each layer as indicated below.
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(3.22)

H

M, = % zdz = a, zdz (3.23)

Substituting (3.21) into (3.22) and (3.23) yields,

r_,_l,,,r_,,'
N --k/ ,/-Z/Q-

L.N,,J'--'L_ -' ]l..r41 ..-.ILL..r<l ..F,:]}
@ _ ['.-,Lr°J J ".-,L_J '.-,L4

(3.24)

M,I . Fo_; ix]ix]_ @ '.-,r ° ",-,_ ".-,_; ".-,Lr;J J

(3.25)

Recognizing that the midplane strains, midplane curvatures, and lamina CTEs are independent

of z, the following defimtions are introduced:

_,,_,__,oI_rm _ _,_l (3.26)
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(3.27)

I
(3.28)

where the matrix A is called the extensional stiffness, B is called the coupling _s, and __Dis called

the bending stiffmess. Additionally,

-r -,-, o,_ir< l
N r I= --k --k LJ (3.29)

M;l . ro-_;
M r /= --,

I

M_l '=' L_L -_.J

--'I 1Q,_Q,ol _,

m__j L_j
(3.3o)

N:I,v;/= /_
.,VDJ,:,L_

(3.31)

IM:l . F_,__,_ o,:] ..re.1

.-,Lr:.,JL-,VsDJ':' LO;_Oft Q_J, •

(3.32)

where [N r ] and [M r ] are the thermal force and moment vectors, and [N p ] and [M p ] are the plastic

force and moment vectors. Note that the plastic mains are dependent on z, and thus the integrals in

(3.31) arid(3.32) cannot be solved a priori.
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Using the above definitions, equations (3.24) and (3.25) can be written as

M,+M;+M;

a,i AI_ ,4,6 B,1 B_ B_6

A1_ _ _ B_ B,, B_

AI6 _26 & BI6 B26 B66

B_, BI_ B,_ D_1 D_ D_

B16 B26 B66 DI6 D26 D66

4
0

Y_

_ K'x.y

(3.33)

In order to determine the out-of-plane strain, 6,, the out-of-plane stress, o-:, is set to zero, and

the standard constitutive equation is used to yield,

_. : -c.; (_C_" __ _ Ar_ _ )_ ___t_,_ 4,r- g )--_-T(r_ - _A r- r_ )+_ Ar +___

(3.34)

-- k k

where C,; are rotated stiffness matrix components in the kth layer, and a, = t22 for transversely

isotropic layers.

The six-by-six matrix in (3.33) is referred to as the ABD matrix or the laminate stiffness matrix.

This equation is the key to lamination theory. If the loading applied to the laminate and the plastic strains

are known, the laminate stiffness matrix is inverted, and the midplane strains and curvatures are

calculated. Then using (3.19), the strains at every point in the laminate are calculated, and from (3.21),

the stresses can be calculated as well. The solution procedure in the presence of plastic effects is discussed

in Section 3.5.
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3.3 The Method of Cells

The method of cells, developed by Aboudi (1989), is based on the representation of a doubly

periodic array of infinitely long fibers in a matrix by the geometry shown in Figures 3.4. The basic

building block of this doubly periodic array of fibers in a matrix, the repealing unit cell, is shown in

Figure 3.5. The four individual subcells that make up the unit cell are denoted by (fir)= (11), (12), (21),

or (22). Each subcell has a local Cartesian coordinate system denoted by xl, x20_ , _-_r).

The subcell displacement components are represented by a first order Taylor series expansion in

_20_, _3c') '

ui0_) = wi0_) + _20_ _) + _3_r) _) i= 1,2,3 (3.35)

where w_ )are the displacement components of the center of the subcell, and the microvariables O0_r)

and _) represent the dependence of the subceU displacements on the local coordinates. In order to

X2

_.__1__. _ Fiber

I
Matrix

Figure 3.4: Method of ceUs geometry: doubly periodic array of square fibers in the matrix.
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×3

Figure3.5:Methodofcellsgeometry:therepeatingunitcell.

obtain the effective constitutive equation for the composite, expressions for the microvariables in terms of

the average strains of the composite are required. These expressions are found with the use of strain-

displacement relations for the subcells, subcell constitutive equations, continu/ty conditions between the

subcells and between adjacent unit cells, and relations between the subcell stresses and strains and the

average composite stresses and strains. The procedure for generating all the required relations is outlined

below.

The microvariables can be related to the subcell strain components through the standard strain-

displacement relations:

i = 1, 2, 3. (3.36)

Continuity of interracial displacements between the four subcells within the unit cell requires that
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and,

uor)l = u_2r)]zo,___"

U (_) l = U 0_2)

(3.37)

(3.38)

These continmty conditions are applied in an average sense; the integrals of the displacement components

along the boundary are reqmred to be continuous. Thus,

and,

2

t.' =o
-I..Z.T

2

(3.39)

2

(3.40)

Substituting for ui_r) in (3.39) and (3.40) with (3.35), and performing the integration yields,

and,

,,,_'")-h',_0": w?">+1%,_!'">
2 r! "ri

w_>+4 _> : w_>-I, ,_.>.

(3.41)

(3.42)

Continuity between adjacent cells is also required. Considering first the x 2 -direction yields,

and,

I
u(lr) = _(2r)l h.

-_) -7.__
(3.43)
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u_lr) .m__ = u(2r) (3.44)
, _-_

"2 -5- --T

where "above" and _oelow" refer to the adjacent cells. Applying these conditions in an average sense,

substituting with (3.35), and integrating yields,

anc_

77"i b,/ow 2 r
(3.45)

(3.46)

The quantities from the cells above and below are represented using a Taylor series expansion of the form

f(xo+Ax)= f(Xo)+_x ] Ax+82--_f2 Ax2+...
•, _X x,

(3.47)

Retaining only terms up to the first order in the cell dimension ha in equation (3.45) yields,

_0r) h_ 1w_,__(h,+h_)_.., +_,_=/?,, h_!=,
8x 2 .'- 2 "' "

(3.48)

Similarly, equation (3.46) becomes,

• "2"_'_ = " +(hi+h2) ex= 2 (3.49)

Subtracting (3.49) from (3.48) yields,

= (3.50)
ex_ ex_

and subtracting (3.49) from (3.38) yields;
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(3.51)

A similar application of displacement continuity between cells in the x 3-direction yields,

and,
8x3 Dx3

t,:) +t2: ) -(t, +t2) 8x,

(3.52)

(3.53)

Recluirmg_) tobeuniforminthecelland using(3.36)yields,

Ox I c_xl 8x 1 c_xI
(3.54)

The conditions of (3.50), (3.52), and (3.54) can be satisfied by requiring

w:.>=w:")-w:_'>=w:=>=w,. (3.55)

The average strain components in the composite are given by

1 2 60_,>-_0=-_r y" Vpr (3.56)
t' a,r=l

where Vat = ha lr and g = (_ + _ ) ( l1 + l2). Substituting nsmg (3.36), (3.51), (3.53), and (3.55) yields

(3.57)

This expression relates the gradients of the subeell center displacements to average cell strains. It willbe

usedtorelatethesubcellstrainstotheaveragecellstrains.
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The total swain components in the subcells are represented as the sum of the elastic (e), plastic

(p), and thermal (T) strains,

+ p(/b.) + 4csy). (3.58)

The subcell constitutive equations are used to relate the subcell stresses and strains. For transversely

isotropic constituents with 2-3 isotropy they are given by

,,A/_r) I

..,J_r) I

,,d._) I
m

..u,r)I

_) I
_ m

c_

o

o

0

c,_, _) o o oi1

c_) c_) o o
c_) c_) o o

0 0 C_ ) 0

0 0 0 C_ )

o o o o _)J

_16st)

_2 6st)

6_30_)

2 _2 _>

2 _3 _>

_2 _23_>

(3.59)

where C_09r) - lrF'CSr)- C_°_r)). Note that the shear strams,_, csr) (i ;e j) ,are tensorial quantities.
-- 2 X'v22

The average stress components in the composite are given by

1 2 S,j0_._o =-- y" V,sr (3.60)
V p.r=l

where $#.C/b,)are the average subcen stresses, given by

1 hpl2 Ir 12

(3.61)

However, from (3.36) and (3.55) it is clear that the subcell strain components are independent of _20_)and

_s¢r). Then from (3.59), _o_Sry)are independent of _2cs) and _3¢r) as well, and (3.61) reduces to,

,.,f,_r>= _o_y>. (3.62)
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Equations (3.60) and (3.62) will be used to relate the subcell stresses and the average cell stresses.

Substituling (3.37) into (3.62) and using (3.36), (3.54), (3.55), and (3.57), as well as the condition of

incompressibility of plastic deformation,

C_(&) + _0_) + 6_33C&)= 0 (3.63)

the following relations are obtained:

s_, =c,,_,_,,+c_,(_, +#/,)-(c_'_, _ +2c,_'_')ar-(c,_' - c,?_')4_

s_,=c,t,_,,+c: ¢: +c_)#.-[c_,:, +(c_)+c:)._,]_
-(c,,_,-c_,)_,,_

(-,Cot)_ ¢J_')s_' =c_' (_' +_,_')- 2.._ _,, (3.64)

where _r) arethe subcellCTEs. h should be noted that the coefficients of the inelastic terms are

specialized to an isotmpic material because the inelastic constitutive theory that will be used is applicable

only for an isotropic material. If the material is transversely isotropic, it is required to be elastic in both

CCMICRON and MCLAM.

As the last step in generating the effective constitutive equations, continuity of tractions is

applied along the subcell and cell interfaces in an average sense yielding

s2Clr) :- ._,(2r) (3.65)
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S_ ) = S_0n) (3.66)

At this point, there is a sufficient number of equations to solve for the mierovariables to obtain the overall

composite stress-strain relations. From (3.51) with i = 2,

(3.67)

_{22D= (3.68)

where h = hi + h2 . Similarly, from (3.53) with i = 3,

(3.69)

=,)
q/32D = (3.70)

t,

where l = l, + 12. From (3.65) with i -- 2, using (3.64) and (3.67)-(3.70), we obtain:

(3.71)

(3.72)
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wharo_/=C;_,_+(C=+C;,)4 0-f,")-P_ogn_g_tthe(11)su_,'isocc_,iedby

the fiber while the remaining subcclls arc occupied by matrix, "ff and "m" superscripts have been used in

(3.71) and (3.72). From (3.66) with i=3, using (3.64) and (3.67)-(3.70), we obtain:

(3.73)

Equations (3.71) - (3.74) form a set of simultaneous equations that can be written,

40 4, o 4: _"J s,

(3.75)

Equation (3.75) can then be inverted to solve for the microvariables,

_='/;[s s s s//J_/_'"/ s r_o/,, /,_//]_/•
_=)J T13 T1, Ti5 TI_JLJ,J

(3.76)

Where explicit expressions for _, T_, and ,], are given in Appendix C.

The remaining microvariables involved in the normal stress-strain relations can be determined

using (3.67) - (3.70). Then using (3.60) and (3.64) the composite constitutive relations are obtained m the

forli1,
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E llhi2 31{i l1lII-l ilA I

whereb,_.are_nen_ of_ eff_ _es_ _-_ X_.co-_theDL_,'_terms,and_ are,h_

effective composite CTEs. The effective CTEs that arise from the method of cells are identical to those

predicted by Levin's formula (Aboudi 1991). The expressions for bo., H0, and a_ axe given in Appendix

C.

For a square cell and square subcells (i.e., ]_ = h2 and lI= l2), bl2 = bl3, b22 = b33, and

b44 = b55. This leaves 6 independent elastic constants, rather than 5 for the transversely isotropic case. It

is desirable to have cylinders in CCMICRON and layers in MCLAM that are transversely isotropic (with

isotropy in the plane transverse to the fiber direction). Thus the effective stiffness matrix components are

rotationally averaged about the x I axis to yield a transversely isotropic set of effective sfit_ess

components. The results of this averaging procedure axe given in Appendix C.

The effective shear stress-strain relations are not needed for CCMICRON since all shear

components of stress and strain axe zero for the axisymmetric loading that is considered in the

development of the model. For MCLAM, while the out-of-plane shear stress and strain components

(°-13, _13,0"23,623) in a lamina axe zero, the in-plane shear stress and strain components (o"12, 612) are,

in general, non-zero. Thus, effective in-plane shear stress-strain relations are needed.

From (3.51) with i=l, we obtain:

_12') = _x2 (3.78)

_i C22)

¢_112)= (3.79)

and from (3.65) with i=l, using (3.64), we have:
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_b112)- 2 6_'f 2) = rl_(=)- 2 6_2(=).

(3.80)

(3.81)

Equations (3.78) and (3.80) fan be solved for _(iu) and t1_21) while (3.79) and (3.81) can be solved for

,_(=)
_I ll) and _i -

hc__, - h,(c: -c_,)e,,,:+24(c:¢?,_,c,4<,,>)
dx 2 8xl

= ,. (3.83)

#7=,=e,,,+2_ (.,<,=,_4<,.=,) (3.84)

_122) = O'___.._l_ 2 ___(_,lP2(12)_ _elP2(22))
8x2

(3.85)

The remaining constitutive relation can then be determined as follows.

2

_,r=l

(3.86)

- 1 f_gwt + _2_

where _12 = _ _._ _j" The expressions for b_ and Hl2 are given in Appendix C. At this

point, everything that is needed from the method of cells for CCMICRON and MCLAM has been

determined.
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3.4 Incorporation of the Method of Cells into CCMICRON and M_

The process of incorporating the method of cells into CCMICRON and MCLAM is

straightforward. CCMICRON relies on the effective properties for each cylinder and MCLAM relies on

effective properties for each layer. These effective properties, in the form of effective _s components

and effective CTEs, are determined from the method of cells using equations (3.77) and (3.86) given in

the preceding section. For elastic cases, this is all that is necessary. However, for cases in which

plasticity is present, the mJcrogeometry of the method of cells is utilized again.

In CCMICRON, the stress and strain components are dependent on the radial distance, r. In

MCLAM, the stress and strain components are depcndemt on the through-thickness position, z. In both

models the plastic strains are integrated over the model geometry to find the plastic force terms in

equations (3.15) and (3.33). To accurately account for this variation in the plastic strain integrals, the

individual cylinders in CCMICRON and the individual layers in MCLAM are divided into 20 regions.

This results in 21 evaluation points in each cylinder or layer, where the first and last point coincide with

the individual cylinder or layer boundaries. The stress and strain components at these 21 points are

continuously updated throughout the specified loading cycle. When plasticity is present, the strain

components are evaluated from the solution of equation (3.15) or (3.33) at a particular evaluation point

and subsequently applied as the average cell strains within the method of cells. It should be noted that for

MCLAM, the average cell strains correspond to the strains at the evaluation point in the principle

material (1-2) coordinate system for the layer. The subeell strains are then determined from (3.36). The

results are,

4,,= _

_
..(21) =
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_12) = =e,2 (3.87)

where the microvariables arc obtained from the solution of equation (3.76).

Thus, the subcell strains are known at each evaluation point. The knowledge of the average and

subcetl strains allows the determination of plastic strain increments within each subcell using the classical

incremental plasticity theory equations presented in Section 3.6. These subceU plastic strain increments

are then used to evaluate increments in the plasticity terms (the H o. terms) in (3.77) and (3.86). The H#

increments are then used to determine the macroscopic plastic strain increments from,

i ,liblb12b13]lE l1
d,_(.J b,3 b_ b33 dH33

d//l 2
(3.88)

These plastic strain increments are then used to re-evaluate the plastic force terms, resulting in new

macroscopic strains at each evaluation point upon solution of the respective global equations, (3.15) and

(3.33). The new estimates of the total macroscopic strains at the various radial or through-thickness

locatiom are then passed to the method of cells, and the process is repeated, as described in the following

section, until the desired convergence is achieved.

To summarize the process, when plasticity is present, the strain components at the evaluation

points obtained from CCMICRON and MCLAM are taken as the average cell strain components in the

method of cells. The subcell strains are then calculated and used to evaluate the subcell plastic strain

increments using the classical incremental plasticity theory equations. These are then employed to

calculate the macroscopic plastic strain increments.
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3.5 Solution Procedure

In CCMICRON and MCLAM, the sets of equations that must be solved are given by (3.15) and

(3.33) respectively. They can both be written in the form,

SM F_"+_F +_F" (3.89)

where SM is a type of stiffness matrix, _ is a vector consisting of the unknown displacements in the case

of CCMICRON, or midplane strains and curvatures in the case of MCLAM, F_m is the mechanical force

vector, __.Fr is the thermal force vector, and __.Fp is the plastic force vector. In the derivation presented in

Section 3.1, it is assumed that there is no mechanical loading for CCMICRON. In both models, when

plasticity is present, equalion (3.89) cannot be solved for _ directly because the components of _Fp

depend on total strain components, which themselves depend on the components of __. Since _ is not

known, the total swain components cannot be evaluated directly, and neither can the components of FP.

Thus an iterative process is necessary, together with application of mechanical and thermal loading in an

incremental manner.

Once yielding has occurred, the plastic strains are set to what they were after the completion of

the previous loading increment. The loading is incremented (i.e., a small temperature or mechanical

loading step is applied) and the appropriate equations are used to calculate the components of the plastic

force vector based on the previous plastic strain values. The thermal and mechanical force terms are

known exactly, so (3.89) can be solved for the unknown vector, _. The components of tiffs vector are the

interracial radial displacements and the uniform axial strain in CCMICRON, and the midplane strains

and curvatures in the lamination theory. These terms are then used to evaluate the strain field in the

cylindrical assemblage or laminate. These new strain values are then used to calculate plastic strain

increments through the use of the method of cells and the classical incremental plasticity constitutive

theory. If the plastic strain increments are non-zero, the assumption that the plastic strains were the same
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asthey were after the previous loading increment was incorrect.

previous plastic strains following the procedure outlined by Mendelson (1983),

The strain incr_nents are added to these

(3.9o)

where doe_0are the plastic strain increments. Section 3.6 will discuss how the plastic strain increments

are calculated using the classical incremental plasticity theory.

Using the new values for the plastic strain components, the components of the plastic force vector

are re-evaluated. Clearly, from (3.89), when the plastic force vector components change, the components

of the unknown vector will change as well. The total strain field is modified, thus the plastic strains

change again, and the process must be repeated. Eventually, after a number of iterations, the plastic

strains converge, and another loading increment can be applied.

As noted in the previous section, since the strain components depend on the radial coordinate r in

CCMICRON and the through-thickness coordinate z in MCLAM, they must be evaluated at a number of

points in each cylinder or layer. The integrals that appear in the plastic force vector (see Appendix A and

equations (3.31) and (3.32)) are evaluated numerically based on the plastic strains at a number of points in

each layer or cylinder. Twenty-one evaluation points are used for this purpose.
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3.6 Classical Incremental Plasticity Theory

The inelastic constitutive theory used in CCMICRON and MCLAM is based on modified

Prandtl-Reuss incremental classical plasticity equations proposed by Mendelson (1983). Omitting the

designation (fly) that identifies a given subcen for notational simplicity, the plastic strain increments for

each subcen are calculated from

d6_o = e_ d;L (3.91)

where e_. is the modified strain deviator and d_ is a proportionality constant that ensures that the stress

vector remains on the yield surface during plastic loading (Williams and Pindera, 1994b). The modified

strain deviator is defined as

e_. = 6¢ - _ - 180.6 _ (3.92)

where c 0. is the total strain tensor for the subcell, and 87. is the Kronecker delta. It should be noted that

the shear strains in this section are tensorial quantities. The proportionality constant, d2, is given by

d2 = 1 cr,_ (3.93)
3G _,,

where G is the subcell shear modulus, cr,_ is the effective stress in the matrix subcens, and '_,t is the

equivalent modified total strain, d;L > 0 for plastic loading, and d_, < 0 for neutral loading or

unloading. In the modified Prandtl-Reuss equations proposed by Mendelson, the yon Mises yield

condition is built into (3.93); if d2 < 0, no further yielding takes place. The equivalent modified strain

required in (3.93) is given by,

E,, = _e_.e_. (3.94)
y3
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where the modified strain deviator, e_, is known from (3.92).

The stress-strain response of the fiber is taken to be linearly elastic and temperature-dependent,

and the elastoplastic matrix is taken to be bilinear and temperature-dependent. Input data for the models

are required in the form of the yield stress (Y) and the post-yield slope of the stress-strain curve

("hardening slope", H) at a user-determined number of temperatures. The effective stress in the matrix is

given by,

o-,ff = ]-]_ + Y (3.95)

where 6_ is the eff_tive plastic strain, calculated from

(3.96)

where the effective plastic strain mcremem is given by

d6, o. = "_ _/(d,_-d_) z +(d 4 -d4) 2 + (d,_'-d4) 2 + 6(do,'_'2).
3

(3.97)
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This chapter addresses the effects of matrix plasticity, stress-free temperature, nonuniform fiber

distribution, and misalignment of fibers on the thermal expansion of Gr/Cu composites. The objective is

to determine under what conditions these effects are important and should be considered in modeling the

thermal response of real Gr/Cu composites. The examination of the effect of nonuniform fiber

distribution comprises the majority of the chapter. Radially nonuniform fiber distribution and fiber

distribution that is nonuniform in the through-thickness direction are modeled using CCMICRON and

MCLAM, rcsp_Jvely.
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4.1 Material Properties

In order to model the effective thermal expansion of Gr/Cu, material properties for graphite

fibers and copper are needed as input data to the models described in the previous chapter. The required

properties are the Young's meduli, the Poisson's ratios, the axial shear moduli (for transversely isotropic

materials), the CTEs, and two quantifies that characterize the inelastic behavior, namely the yield stress

and the hardening slope. The constitutive response of inelastic materials is taken to be bilinear; the slope

of the post-yield response is called the hardening slope (lISP). Table 4.1 gives the material properties for

PI00 graphite fibers and OFHC copper at a number of temperatures, together with the source of the data.

The ability of the models to accurately predict the composite behavior depends on the reliability

of the material properties of the individual constituents. Unfortunately, the properties of the P100

graphite are not well characterized. The mechanical properties of the graphite fibers from Volk et. al.

(1991) were hacked out of a concentric cylinder model, while the fiber axial CTEs were obtained from

measurements using a fiber dilatometer. The transverse fiber CTEs, on the other hand, were backed out

using Chamberlain's equation with experimental transverse thermal expansion data for Gr/Cu (Ellis,

1992). These values may contain some error since Chamberlain's equation assumes that the composite

behaves elastically (Raghava, 1988).
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PIO0 Graphite Fibers

Temp EA ET GA vA v-I- 10_OF0-°/ 1 a,,ToF0"°/°F Msi Msi Msi

70 100 0.5 1.42 0.41 0.45 -5.03 0
100 100 0.5 1.42 0.41 0.45 -4.75 1.2
300 100 0.5 1.42 0.41 0.45 -2.27 9.2
500 100 0.5 1.42 0.41 0.45 -0.208 14
700 101 0.5 1.42 0.41 0.45 0.992 14.4
900 102 0.5 1.42 0.41 0.45 2.53 14.8

1100 103.5 0.5 1.42 0.41 0.45 4.97 15.6
1300 104.5 0.5 1.42 0.41 0.45 5.45 16.3
1500 105.5 0.5 1.42 0.41 0.45 5.45 17.1
1700 106.5 0.5 1.42 0.41 0.45 5.45 17.9

Source 1 1 1 1 1 2 2

OFHC Copper

Temp E v a o-y HSP
°F Msi 10"6/°F Ksi Msi

70 18.8 0.35 8.18 10.3 1.425
100 18.7 0.35 8.28 9.97 1.403
300 18.0 0.35 9.35 9.37 1.270
500 17.2 0.36 10.1 8.95 1.126
700 16.4 0.37 10.7 8.42 1.000
900 15.5 0.375 11.6 6.15 0.760
1100 14.5 0.38 12.0 3.87 0.521
1300 13.2 0.38 12.3 2.25 0.363
1500 11.7 0.37 12.6 1.25 0.282
1700 9.8 0.35 14.7 0.27 0.204

Source 3 3 3 314 314

Table 4.1: Material properties for PI00 graphite fibers and OFHC copper. Sources: I - Volk eto al.
(1991); 2 - Ellis (1992); 3 - Rocketdyne Materials Properties Manual (1987); 4 - NASA Lewis Research
Center (I 992).
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4.2 Effect of Plasticity

It is generally accepted that matrix yielding can occur in metal matrix composites when they are

subjected to su/ticiently high temperature changes. This is due to the large mismatch in the CTE of

ceramic fibers and metallic matrices. When a temperature change is applied to a composite, the fiber and

matrix tend to expand or contract by different amounts, especially in the direction of the fibers. However,

since the fiber and matrix are bonded together, they must expand or contract the same amount in the fiber

direction. This gives rise to stresses that are often high enough to yield the matrix.

If the effect of plasticity is ignored, the stresses in the matrix will continue to increase with

increasing thermal load to a level that may be unreafi_c for the material, resulting in a predicted

composite response that will also be unrealistic. Figures 4.1 and 4.2 present a comparison of predictions

for the longitudinal and transverse thermal expansion of Gr/Cu with an elastic matrix and an elastoplastic
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Figure 4.1' Longitudinal thermal expansion of 50 v/o Gr/Cu. Comparison between elastic and

elastoplastic analysis. MCLAM was used with uniform fiber distribution to generate the composite results
shown.
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Figure 4.2: Transverse thermal expansion of 50 v/o Gr/Cu. Comparison between elastic and elastoplastic
analysis. MCLAM was used with uniform fiber distribution to generate the composite results shown.

matrix. A stress-free temperature of 1700 °F was employed in the calculations. MCLAM was used to

model this uniform unidirectional composite starting at 1700 OF, decreasing the temperature

incrementally to 70 OF,and then increasing the temperature incrementally to 1500 OF to model a thermal

expansion test. CCMICRON yields identical results since for composites with uniformly distributed

fibers, the models are the same. For plotting purposes, the thermal expansion curve of the composite was

shifted to eliminate the change in length induced during the fabrication cool-down. The thermal

expansion curve then simulates a thermal expansion test which begins at 70 °F, with the thermally

induced strain during the heating cycle measured relative to the speeimen's dimensions at this

temperature. This shifting of the curve to eliminate strain induced during the processing history is done

for all thermal expansion plots presented in this investigation.

Thermal expansion curves are presented rather than plots of the instantaneous effective CTE of

the composite because plastic deformation is an irreversible process. A CTE can only be defined when the

thermal expansion is reversible since a CTE represents a material property independent of previous
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deformationhistory.Thisis thecasewhena singlephasematerialis subjected to thermal loading, or

when the effects of prior inelastic deformation in multi-phase materials shake down due to sufficient

strain hardening in the inelastic phases.

Figure 4.1 shows that plasticity has a major effect on the longitudinal response of Gr/Cu. For

temperatures up to 300 °F the elastic and plastic predictions are the same since the matrix has not yet

yielded. After yielding occurs, the plastic response diverges substantially from the elastic response. In the

plastic case, the stresses in the matrix do not build up to the high levels observed in the elastic case. The

matrix deforms much more easily in the plastic range, so its ability to restrain or transfer stress to the fiber

is diminished. Thus the response is more don_nated by the fiber in the plastic case than in the elastic

Figure 4.2 shows that the effect of plasticity on the thermal expansion is not as great in the

transverse direction, but it is still substantial. Again, the elastic and plastic responses are identical until

matrix yielding initiates at approximately 300 °F. The result that the predicted transverse composite

response is not bounded by the transverse response of the fiber and the matrix indicates that the Poisson's

effect has a significant impact. Since the copper matrix tends to expand more than the fiber in the

longitudinal direction during heating, the fiber restrains the copper, placing the copper in compression.

Thus, in addition to the positive thermal expansion in the transverse direction, there is a positive

mechanical strain in the matrix in the transverse direction induced by the compressive stress in the

longitudinal direction.

Matrix plasticity is a major factor affecting the thermal response of Gr/Cu. As the figures

indicate, matrix yielding can occur at temperatures as low as 300 °F. The melting temperature of copper

is 1981°F, so yielding is occurring well within the useful temperature range for pure copper. Thus

treating the material as elastic and employing a yield-limited design strategy would reduce the service

temperature of Gr/Cu components to a level that would render them ineffectual for most high heat flux

applications. Alternatively, treating Gr/Cu as elastic at higher temperatures results in unrealistic

predictions. Therefore, to obtain a useful and realistic model of the response of this composite, matrix

inelasticity must be included at the expense of a simple analytical solution.
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4.3 Effect of Stress-Free Temperature

When a thermal expansion test is performed on a composite, the expansion is usually measured

as a change in length from room temperature. However, as briefly discussed in the preceding section,

room temperature is not the true starting point of the thermal history of the composite. During the

manufacturing process the composite is subjected to an elevated temperature required for consolidation of

the fiber and matrix phases. In the case of Gr/Cu and most other metal matrix composites, the life of the

composite begins near the melting temperature of matrix. The composite is then cooled to room

temperature, which itself amounts to thermal loading. At some point during cool down, the molten or

soilened metal forms a bond with the fibers, and residual stresses arise because of the CTE mismatch just

as they do during a thermal expansion test. Thus at the start of a thermal expansion test, high residual

stresses may already exist in the composite, and the matrix may have already yielded. The residual

stresses can have a profound effect on the behavior of the composite, and it is thus necessary to take these

stresses into account when modeling the thermal expansion of metal matrix composites.

To account for residual stresses, a stress-free temperature other than room temperature is chosen.

This is a temperature at which it is assumed that no stresses initially exist in the composite. The

temperature cycle is started at the stress-free temperature and incrementally decreased to the starting

temperature of the simulated thermal expansion test. The actual thermal expansion is then modeled by

incrementally increasing the temperature, and the resulting thermal expansion curve is shifted, as

described in the previous section, so that the starting temperature of the simulated thermal expansion test

corresponds to zero thermal expansion.

The choice of the stress-free temperature can have a profound effect on the thermal expansion

behavior. Figures 4.3 - 4.8 show the thermal expansion curves for stress-free temperatures of 1500 °F,

1000 °F, and 70 OFwhen the fiber volume fraction ranges from 0.70 to 0.30. Several trends should be

noted from these figures. Higher stress-free temperatures result in greater thermal expansion in both the

longitudinal and transverse directions. For the longitudinal direction, this may be attributable to greater

strain-hardening of the matrix during cool down from higher stress-free temperatures. This in_ the
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Figure 4.3: Longitudinal thermal expansion of 70 v/o P100 Gr/Cu for three stress-free temperatures
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Figure 4.4: Transverse thermal expansion of 70 v/o PIO0 Gr/Cu for three stress-free temperatures (SFTs).
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Figure 4.8: Transverse thermal expansion of 30 v/o P100 Gr/Cu for three stress-free temperatures (SFTs).
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yield stress of the matrix, thus allowing the matrix to transfer greater stresses to the fibers at higher

temperatures. In the longitudinal direc_on_ the effect of the stress-free temperature becomes more

profound with decreasing fiber volume fraction. In the transverse direction, however, the effect of the

stress-free temperature becomes less pronounced with decreasing fiber volume fraction.

Since the results presented in Figures 4.3 - 4.8 indicate that the effect of stress-free temperature

may potentially be significant, a method is needed to estimate at what point during the fabrication cool-

down residual stresses initiate. Developing such a method is complicated by the difficulty in identifying

the point at which a chemical bond forms between the fiber and the matrix. An additional complication

arises due to time-dependent or viscoplastic response of copper at elevated temperatttres and the associated

relaxation of the residual stresses during the fabrication cool-down. Viscoplasticity becomes significant

for metals at temperatures starting from between 0.3 and 0.4 times the absolute melting temperature

(Ashby and Jones, 1981). This places the range for copper between 273 °F and 517 °F. Thus, for Gr/Cu,

stress relaxation in the matrix may be an important factor.

A potential solution is to estimate bounds for the stJess-free temperature. A conservative

estimate of the stress-free temperature is obtained by assuming that the composite is stress-free when the

matrix is near its molten state. A stress-free temperature that is as high as possible with the known matrix

properties is chosen in this case. For copper this temperature is 1700 °F. A lower estimate of the stress-

free temperature is obtained by employing a model which accounts for time-dependent or viscoplastic

effects. Incorporating a viscoplastic constitutive scheme directly into CCMICRON and MCLAM was

beyond the scope of this investigation. However, to gain a better understanding of the residual stress

build up during cool down, a multiple concentric cylinder model developed by Williams and Pindera

(1994a) was employed. This model atlows the user a choice of several viscoplastic constitutive theories to

model the inelastic response of the matrix phase.

The multiple concentric cylinder model was used with the classical incremental plasticity and

Freed-Walker viscoplasticity theories to compare stresses in the matrix near the fiber-matrix interface

after fabrication cool-down. The viscoplasticity theory developed by Freed eta]. (1993) for application to

copper and its alloys has been shown to be generally accurate. Figures 4.9 - 4.11 show the matrix
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Figure 4.9: Matrix interfacial axial stress in 55 v/o Gr/Cu using multiple concentric cylinder model by

Williams and Pindera (1994a) with Freed-Walker viscoplasticity and classical incremental plasticity.
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Figure 4.10: Matrix interracial radial stress in 55 v/o Gr/Cu using multiple concentric cylinder model by
Williams and Pindcra (1994a) with Freed-Walker viscoplasticity and classical incremental plasticity.
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Figure 4.11: Matrix interfacial hoop stress in 55 v/o Gr/Cu using multiple concentric cylinder model by
Williams and Pindera (1994a) with Freed-Walker viscoplasticity and classical incremental plasticity.

interracial stress components predicted using the Freed-Walker viscoplasticity theory after cool-down from

1700 °F to room temperature in 15 minutes, simulating the actual cooling time of a unidirectional Gr/Cu

plate after consolidation via pressure infiltration casting (DeVincent, 1994b). Included in the figures are

the predictions obtained using the classical incremental plasticity theory to simulate cool-down from

several different temperatures. The results based on the viscoplastic model for the copper matrix show

that the radial and hoop stress build up slowly from 1700 °F to approximately 500 °F, at which point they

grow rapidly in magnitude. The axial stress builds up gradually over the entire temperature range from

1700 °F. Cooling from 1700 °F using plasticity overestimates the stress components at ?0 °F relative to

the Freed-Walker model. This indicates that significant stress relaxation occurs which is not taken into

account by the classical incremental plasticity. When classical incremental plasticity theory is used to

model the response of the matrix while cooling from 800 °F the stress components are still overestimated.

It should be noted that the knees in the axial stress curve for the cases in which classical incremental
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plasticity was used with stress-free temperatures of 800 °F, 200 °F, and 150 °F correspond to the onset of

yielding in the matrix.

In order to achieve approximately the same axial residual stress as the Freed-Walker model with

plasticity, the stress-free temperature is taken to be 100 °F. Cooling from 100 °F to 70 °F does not cause

yielding in the matrix. Since the axial stress is the most significant of the three stress components, 100 °F

will be used as one approximation for the stress-free temperature. Using the reasoning _M above,

and in order to provide an upper bound, 1700 °F will be taken as a second approximation of the stress-fTce

temperature. Subsequent effects that will be examined will be presented for both stress-free temperatures.
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4.4 Effect of Nonuniform Fiber Distribution

4.4.1CCMICRON

CCMICRON allows one to vary the fiber volume fraction in the radial direction in a piecewise

fashion. This is accomplished by assembling concentric cylinders with different fiber volume fractions.

Since an arbiway number of concentric cylinders can be used, the radial fiber volume fraction variation

can be as continuous as desired. To examine the effects of this type of nonuniform fiber distribution on

the thermal expansion of Gr/Cu, it is necessary to compare the thermal expansion of a uniform composite

with a nonuniform composite using an identical fiber volume fraction. In order to see the maximum

effect, a composite with a large and abrupt change in fiber volume fraction was considered. Thus a

composite with a fiber volume fraction of 0.55 was modeled with three different micro_uctuxes; uniform,

a low fiber volume fraction core surrounded by a high fiber volume fraction cylinder (designated Low-

High), and a high fiber volume fraction core surrounded by a low fiber volume fraction cylinder

(designated High-Low). The boundary between the high and low fiber volume fraction regions was set at

0.7071 times the assemblage radius, so that the volume of the composite was divided evenly between the

two regions. The fiber volume fraction of the dense region was chosen to be 0.9069 to correspond with

the densest possible packing of cylinders. In order to achieve an overall fiber volume fraction of 0.55, the

fiber volume fraction of the dilute region was set to 0.1931. Figure 4.12 shows the cross-sections of these

two coagulations.

Longitudinal and transverse thermal expansion curves for the three configurations using stress-

free temperatures of 100 °F and 1700 °F are given in Figures 4.13 and 4.14. In the longitudinal direction,

the effect of the nonuniform fiber distribution is nearly negligible for both stress-free temperatures. In the

transverse direction there is a slight but noticeable variation for a stress-free temperature of 1700 °F. The

Low-High configuration shows more divergence from the uniform case than does the High-Low

configuration. However, the transverse thermal expansion with a stress-fxee temperature of 100 °F is not

significantly affected by the nonuniform fiber distribution. In all cases shown in Figures 4.13 and 4.14 it

is clear that the effect of the chosen stress-free temperatures is far greater than that of the nonuniform
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Figure 4.12: CCMICRON composite cylinder microstructures.
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Figure 4.13: Longitudinal thermal expansion of 55 v/o P100 Gr/Cu. Uniform fiber distribution and the

two cylinder arrangements are shown for stress-free temperatures of 100 °F and 1700 °F.
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Figure 4.14: Transverse thermal expansion of 55 v/o P100 G-r/Cu. Uniform fiber distribution and the two

cylinder arrangements are shown for stress-free temperatures of 100 °F and 1700 °F.

microstructure. Thus, this type of radially nonuniform fiber distribution appears not to be of great

importance to the thermal expansion of Gr/Cu.

In an attempt to determine under what circumstances radially nonuniform fiber distribution may

have a significant effect on the thermal expansion response of a composite, a parametric study was

performed using CCMICRON. First, the Young's modulus of the fiber was taken to be isotropic using the

value of the axial Young's modulus. This produces a much larger Young's modulus mismatch between

the fiber and the matrix in the transverse direction than is the case using the transversely isotropic

properties. The thermal expansion response for this case is shown in Figures 4.15 and 4.16. The effect of

the fiber nonuniformity is much more evident for this case in both directions and for both stress-free

temperatures. In the transverse direction the magnitude of the effect is now approximately the same as the

magnitude of the effect of the stress-free temperature variation. It is also apparent that the Low-High

configuration has a greater effect than does the High-Low configuration.
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Figure 4.15: Longitudinal thermal expansion of 55 v/o Pl00 Gr/Cu with the fiber Young's modulus taken

to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free

temperatures of 100 °F and 1700 °F.
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Figure 4.16: Transverse thermal expansion of 55 v/o Pl00 Gr/Cu with the fiber Young's modulus taken to

be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free

temperatures of 100 °F and 1700 °F.
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The fiber CTE rather than the Young's modulus was then taken to be isotropic using the axial

value. This causes a large transverse CTE mismatch between the fiber and the matrix. The thermal

expansion curves for this case are shown in Figures 4.17 and 4.18. The curves are similar to those

generated assuming that the fiber Young's modulus is isotropic. In the longitudinal direction, the effect of

the nonuniform fiber distribution is small, but greater than for the transversely isotropic fiber case. In the

transverse direction, the effect is more significant; on the order of the effect of the stress-free temperature.

The final case examined involved taking both the fiber Young's modulus and CTE to be isotropic

using the axial values. The thermal expansion results are shown in Figures 4.19 and 4.20. The effect of

the fiber distribution is much more significant in this case. It is mainly the Low-High configuration that

shows the effect, and the effect is quite large for both stress-free temperatures. In the longitudinal

direction the effect of the nonuniform fiber distribution is nearly as great as the effect of the stress-free

temperature, while in the transverse direction, it is much greater. Since the effect of the nonuniform fiber
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Figure 4.17: Longitudinal thermal expansion of 55 v/o P100 Gr/Cu with the fiber CTE taken to be

isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free
temperatures of 100 °F and 1700 °F.
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Figure 4.18: Transverse thermal expansion of 55 v/o PI00 Gr/Cu with the fiber CTE taken to be
isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for stress-free
temperatures of 100 °F and 1700 °F.
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Figure 4.19: Longitudinal thermal expansion of 55 v/o Pl00 Gr/Cu with the fiber Young's Modulus and
CTE taken to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for

stress-free temperatures of 100 °F and 1700 °F.
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Figure 4.20: Transverse thermal expansion of 55 v/o P100 Gr/Cu with the fiber Young's Modulus and
CTE taken to be isotropic. Uniform fiber distribution and the two cylinder arrangements are shown for
stress-free temperatures of 100 °F and 1700 °F.

distribution was small when just the fiber Young's modulus or the fiber CTE were taken to be isotropic, it

can be concluded that some sort of coupling between the transverse Young's modulus and CTE exists. In

order for a radially nonuniform fiber distribution to have a significant effect on the thermal expansion

behavior of the Gr/Cu composite, there must be a large mismatch in both the transverse Young's modulus

and the transverseCTE.
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4.4.2MCLAM

One of the effects that MCLAM can be used to examine is variation in the fiber volume fraction

of a composite laminate in the through-thickness direction. As was the case with CCMICRON, an

arbitrary number of layers can be used, so the variation in fiber volume fraction can be as continuous as

desired. To examine the effect that this type of through-thickness fiber distribution nonuniformity has on

the thermal expansion, it is necessary to compare the thermal expansion of a nonuniform composite with a

uniform composite with the same average fiber volume fraction. To this end, the first six laminates

shown m Figure 4.21 were considered (the last two will be addressed in Section 4.5).

The laminates Lam 1 through Lain 6 were divided into layers with 0.1931 and 0.9069 fiber

volume fractious such that the average laminate fiber volume fraction was 0.55 in all six cases. As before,

0.9069 was chosen because it is an upper bound on the fiber volume fraction of a composite with

urn'directional cylindrical fibers, while 0.1931 was chosen to produce a composite with an average fiber

volume fraction of 0.55 when the composite was divided into equal parts of each fiber volume fraction.

These fiber volume fractious represent an extreme case since a region cannot have a fiber volume fraction

greater than 0.9069, and a fiber volume fraction of 0.1931 is quite low for a material such as Gr/Cu. Lain

4 has additional layers with fiber volume fractions of 0.65 and 0.45 separating the layers with the two

extreme fiber volume fractious in order to simulate a more gradual change in the fiber distribution.

Lain 1 represents the most extreme case examined. The regions with high and low fiber volume

fractions are large and continuous, and the change m fiber volume fraction is abrupt. In Lain 2 and Lain

3, the transitions from regions of high and low fiber volume fraction are equally as abrupt, but the regions

are separated into four and six alternating layers rather than just two. On the macro scale, Lain 2 and

Lain 3 appear much more uniform than does Lain 1. It should be noted that these three laminates are non

symmetric, with non-zero B matrices (see equation 3.27). Thus bending-stretching coupling will occur

when the laminates are subjected to a temperature change.

Predicted longitudinal and transverse thermal expansion curves for Lain 1, Lain 2, and Lain 3 are

shown in Figures 4.22 and 4.23 along with the uniformly distributed 0.55 fiber volume fraction case.

Since bending does occur, the average change m length is reported. Figure 4.22 shows that the
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Figure 4.21: Laminate configurations.
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Figure 4.22: Longitudinal thermal expansion of 55 v/o P100 Gr/Cu. Uniform fiber distribution and

laminate configurations with one, two, and three sets of high Vf and low Vf laminae axe shown.
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Figure 4.23: Transverse thermal expansion of 55 v/o P100 Gr/Cu. Uniform fiber distribution and

laminate configurations with one, two, and three sets of high Vfand low Vf laminae axe shown.
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nonuniform fiber distribution has a substantial effect on the longitudinal thermal response of Lam I for

both stress-free temperatures. The effect is greater for a stress-free temperature of 1700 OF. The

nontmiformity in the fiber distribution muses more thermal expansion to occur, so the thermal expansion

curve appears higher. The response of I2m 2 and Lain 3 is affected to a lesser degree since these

laminates are more symmetric as indicated by the smaller magnitudes of the B matrix elements.

Comparing the B matrix for Lam 1 and I.am 2 at 70 OFit is observed that the elements of the B matrix for

Lain 2 are exactly one-half those of Lain 1:

-7.134 0.320 1B .,=[0302o 0.9200 0.412_'106lb'r

"-3.567 0.160 0 "]

0.160 0.460 0 ].106 lb I.

0 0 0.206J

However, as shown in Figures 4.22 and 4.23, the effect of this difference on the thermal expansion is

much more than a factor of two. For a stress-free temperature of 100 OF, the predicted thermal expansion

curves for Lam 2 and Lam 3 show almost no difference from the uniform case.

In the transverse direction (Figure 4.23), the trend is similar. Lain 1 exhibits a noticeable

deviation from the uniform case, whereas Lain 2 and Lain 3 do not. The effect is more noticeable for a

stress-free temperature of 1700 OF than for 100 OF. In this direction, however, the fiber distribution

nonuniformity causes less thermal expansion to occur; the expansion curve appears lower relative to the

uniform configuration. This same trend was observed m the results generated by CCMICRON.

The thermal expansion behavior of Lain 1, Lain 2, and Lain 3 indicates that for through-

thickness fiber distribution nonunfformity to have a significant effect on the thermal expansion behavior,

the degree of nonuniformity must be great, and a great deal of bending must occur. Adding layers with

high and low fiber volume fraction to the laminate in an alternating manner reduces the bending-

stretching coupling and lessens the effect of the nonuniformity dramatically.

In order to determine the importance of the abruptness in the change in fiber distribution, Lain 4

was considered. It represents the same overall fiber volume fraction, and the same overall change in fiber

volume fraction as Lain 1, but the change is more gradual. The thermal expansion of Lain 4 is shown in
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Figures 4.24 and 4.25. The thermal expansion of the uniform laminate and Lain 1 are also plotted for

comparison. The figures show that the effect of the nonuniform fiber dism'bution is lessened when the

change is more gradual, but the effect is still significant. Examimng the elements of the B matrix for Lain

4 at 70 *F shows that they are approximately 80% as large as the elements of the B matrix for l.am 1:

I-5.8510.261 0 ]B .,=L0. 610.7490 0.3360 .106lbf.

Thus, introducing layers to create a more gradual change in the fiber distribution produces a substantially

different result than refining the microstrucmre by adding increasingly thinner layers in an alternating

fashion, as was the case with Lain 2 and Lain 3.

To determine what effect nonuniform fiber distribution has on the thermal expansion of

symmetric Gr/Cu laminates, Lain 5 and Lain 6 were considered. Lain 5 has low fiber volume fraction in
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Figure 4.24: Longitudinal thermal expansion of 55 v/o PI00 Gr/Cu. Uniform fiber distribution and

laminate configurations with an abrupt change in Vf, and a more gradual change in Vf are shown.
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Figure 4.25: Transverse thermal expansion of 55 v/o P100 Gr/Cu. Uniform fiber distribution and

laminate configurations with an abrupt change in Vf, and a more gradual change in Vf are shown.

the middle plies and high fiber volume fraction in the outer plies, while in Lain 6 the arrangements of the

plies is reversed. These configurations are similar to the Low-High and High-Low cylinder configurations

used in CCMICRON. The thermal expansion curves of Lam 5 and Lam 6, plotted in Figures 4.26 and

4.27, show that, as was the case with the Low-High and High-Low configurations, little effect of the fiber

distribution nonuniformity is observed. In the transverse direction, there is a slight but noticeable effect,

but in the longitudinal dir_don, the e,flea is nearly negligible. It should be noted that the thermal

expansion curves of Lam 5 and Lam 6 are identical. This is because both laminates are symmetric, so

there is no bending, and because all the layers are unidirectional, there is no shear. Since there is no

bending or shear, the stacking sequence has no effect on the therma] expansion behavior of the laminates

under the assumption of plane stress.

Since Lain 5 and Lain 6 are symmetric, they are similar to the Low-High and High-Low cases

respectively, generated with CCMICRON. Figures 4.28 - 4.31 compare Lam 5 and Lam 6 to the Low-

High and High-Low cases. As the figures show, the thermal expansion response of these cases are very
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Figure 4.28: Longitudinal thermal expansion of 55 v/o PI00 Gr/Cu using a stress-free temperature of 100

°F. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with two

symmetric cases generated with MCLAM.
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Figure 4.29: Transverse thermal expansion of 55 v/o P100 Gr/Cu using a stress-free temperature of 100 o

F. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with two
symmetric cases generated with MCLAM.
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Figure 4.30: Longitudinal thermal expansion of 55 v/o PI00 Gr/Cu using a stress-free temperature of

1700 °F. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with

two symmetric cases generated with MCLAM.
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Figure 4.31: Transverse thermal expansion of 55 v/o PI00 Gr/Cu using a stress-free temperature of 1700 o

F. Uniform, Low-High, and High-Low cases generated with CCMICRON are shown along with two

symmetric cases generated with MCLAM.
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similar. The slight differences are due to the different states of stress predicted by the CCMICRON and

MCLAM models due to the coupled effect of nonuniform fiber dislaibulion and the model geometries

The result that the nonuniform fiber distribution has little effect on the predicted thermal

expansion of symmetric laminates indicates that bending is the cause of most of the observed effect.

When a large dcgrcc of bending is induced, as was the case in Lam 1 and Lain 4, the effect of the fiber

distn'oution is significant. Alternatively, when little or no bending is induced, as was the case in Lain 2,

Lain 3, Lam 5, and Lain 6, the effect of the fiber distribution is insignificant.
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4.5 Effect of Fiber Misalignment

The laminates Lain 7 and Lam 8 shown in Figure 4.21 were considered in order to examine the

effect of a slight fiber misalignment or rotation in a layer thought to be a 0 ° layer. Figures 4.32 and 4.33

show the thermal expansion of these laminates. In the longitudinal direction, the thermal expansion of

both configurations is noticeably different from that of the uniform laminate for a stress=free temperature

of 1700 °F. These laminates exhibit more longitudinal expansion than the uniform laminate because the

fibers are not providing as much restraint in the longitudinal direction due to the slight misalignment.

The effect becomes much less noticeable for a stress-free temperature of 100 °F.

In the transverse direction, the effect of the angle misalignment becomes more noticeable at a

stress-free temperature of 100 °F. For a stress-free temperature of 1700 °F, the effect is negligible. This

is the reverse of the trend in the longitudinal direction. In addition, the transverse response indicates that

the [_+4°] configuration of Lam 7 has a greater effect than the [-4°/0 °] configuration of Lain 8. This
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Figure 4.32: Longitudinal thermal expansion of 55 v/o PI00 Gr/Cu. Uniform fiber distribution and two

laminates with slight fiber misalignment are shown.
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Figure 4.33: Transverse thermal _on of 55 v/o P100 Gr/Cu. Uniform fiber distribution and two
laminates with slight fiber misafignment are shown.

differs from the longitudinal response in which the thermal expansion curves of Lain 7 and Lam 8 are

nearly identical. Clearly, Figures 4.32 and 4.33 indicate that in some cases slight angle rmsalignment can

have a noticeable effect on the thermal expansion of Gr/Cu.

In order to better explain why in the longitudinal direction a stress-free temperature of 1700 °F

resulted in a greater deviation from the response of the uniform laminate than a stress-free temperature of

100 °F, with the opposite being true in the transverse direction, MCLAM was used to model five

symmetric angle-ply laminates. The laminates that were modeled are [+15°]s , [_+.30°]s, [+45°]s , [i-60°]s ,

and [+750]s. In addition, a component of the thermal expansion that has not previously been addressed is

the through-thickness expansion. In cases in which no shear is present, the through-thickness thermal

expansion is almost identical to the transverse thermal expansion. However, in angle-ply laminates, a

great deal of shearing occurs, and thus the through-thickness thermal expansion for these laminates will

be presented as well.
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Figures4.34and4.35showthelongitudinalthermal expansion for the symmetric laminates for

the two stress-free temperatures. Figure 4.34 shows that for a stress-free temperature of the 100 °F, the

longitudinal thermal expansion is relatively insensitive to changes in the angle for the lower angle-ply

configurations. Figure 4.35 shows that the same is true for a stress-free temperature of 1700 °F, but there

is clearly more of an effect at these lower ply angles than for a stress-free temperature of 100 °F. At the

higher ply angles, the reverse is true. The thermal expansion behavior generated using a stress-free

temperature of 100 °F is more sensitive to changes in the off-axis angle for these higher ply angles. This

explains why for a small angle misalignment a greater effect was observed in the longitudinal direction

than the transverse direction for a stress-free temperature of 1700 °F, while the opposite was observed for

a stress-free temperature of 100 °F.

Figures 4.36 and 4.37 show the through-thickness thermal expansion of the laminates for the two

stress-free temperatures. It should be noted that the through-thickness response of a [_0]s laminate is the

same as the response of a [_90-0)] s. This is because these laminates are identical in the through-
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Figure 4.34: Longitudinal thermal expansion of 50 v/o symmetric angle ply Pl00 Gr/Cu using a stress-
free temperature of 100 °F.
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Figure 4.36: Through-thickness thermal expansion of 50 v/o symmetric angle ply P100 Gr/Cu using a

stress-free temperature of 100 OF.
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Figure 4.37: Through-thickness thermal expansion of 50 v/o symmetric angle ply P100 Gr/Cu using a
stress-free temperature of 1700 °F.

thicknessdirection. Thus, for example, the response of the [±15] s laminate also represents the response of

a [+75] s laminate.

Unlike the longitudinal thermal expansion, the through-thickness thermal expansion of each

laminate is greater for a stress-free temperature of 100 OF than it is for 1700 OF. For both stress-free

temperatures, the through-thickness thermal expansion is low for high and low ply angles, and it attains a

maximum at a ply angle value of 45*. At this peak value, the through-thickness thermal expansion is

much greater than the transverse thermal expansion of the 0° configuration, which is the same in the

through-thickness direction. In addition, significant changes in the through-thickness thermal expansion

occur with relatively small changes in the ply angle for the lower angle ply configurations.
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It has been shown in the previous chapter that matrix plasticity, choice of stress-free tcmperatu_,

nonuniform fiber distn'bution, and fiber misalignmcnt affect the thermal expansion of Gr/Cu to various

degrees. This chapter prcscnls comparison between the predicted icsponsc obtained from the developed

models in the presence of these effects and experimentally-measured thermal expansion data Since the

actual microstructure of Gr/Cu is better modeled as a laminate with layers of different fiber volume

fraction than an assemblage of cylinders, MCLAM will be used exclusively in this chapter.

In addition to monotonic thermal loading, a comparison is also made between the predicted and

experimental cyclic thermal expansion of Gr/Cu. A discussion of potential factors that may be causing

discrepancy between the predicted and measured response of the composite is also included.
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5.1 Monotonic Thermal Expansion

Oneof the objectives of this investigation was to develop models to simulate the experimentally

observed thermal expansion of Gr/Cu in the presence of nonuniform fiber distribution. It was shown in

Chapter 4 that the radial fiber distribution nonuniformity modeled with CCMICRON did not have a

significant effect on the thermal expansion behavior of Gr/Cu. Furthermore, as will be shown, the actual

fiber distribution in Gr/Cu does not exhibit radial character. Thus modeling actual Gr/Cu thermal

expansion specimens using CCMICRON is not appropriate for this particular composite system. In real

Gr/Cu, areas of high and low fiber volume fraction can be approximated by layers or plies. This is one of

the reasons that MCLAM was developed; to model the actual microstructure of Gr/Cu thermal expansion

_-'iIneBs.

For the purpose of this investigation, three longitudinal and two transverse thermal expansion

specimens were tested. The tests were performed by S.M. DeVmcent at NASA Lewis Research Center. A

single push-rod dilatometer was used. Micrographs of the cross sections of the specimens perpendicular

to the fiber direction are shown in Figures 5.1 - 5.5. While the entire cross section is shown for the

longitudinal specimens, only a portion of the cross section is displayed for the transverse specimens. The

longitudinal specimens are designated d7-0, dS-0, and dl0-0, and the transverse specimens are designated

dl-90 and d2-90.

The longitudinal specimens exhibit a great deal of fiber distribution nonuniformity. The large

white areas in Figures 5.1, 5.2, and 5.3 are regions of pure copper where there axe literally no fibers. In

contrast, the two transverse specimens have a much more uniform fiber distribution. This is due to the

fact that the longitudinal and transverse specimens were cut from different Gr/Cu plates. Clearly, the

longitudinal specimens lend themselves much more readily to be modeled as laminates rather then

concentric cylinders. It should be noted that 0.1 weight percent of chromium was added to the copper

matrix to ensure a good bond between the fiber and matrix. It was determined that this chromium, which

collects at the interface, does not significantly affect the properties of the individual phases.
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Figttre 5.1: Micro graph of specimen dT-O. Courtesy of S.M. DeV'mcent.
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Figure 5.2: Micrograph of _en d$-O. C.otmesy of S.M. I_V'm¢_
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Figure 5.3: Micrograph of spe_4m_ dl0-0. Courtesy of S.M. DeSrmc_mt.
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Figure 5.4: Micrograph of a portion of specimen dl-90. Courtesy of S.M. DeVincmnt
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Figure 5.5: Micrograph of a portion of specimen d2-90. Courtesy of S.M. DeVincent.
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Figure5.6 indicates how the longitudinal specimens were partilioned into layers for modeling

purposes. The thickness and fiber volume fraction of each layer are indicated in the figure. The layer

dimensions are based on a total laminate thickness of unity. The method by which the longitudinal

specimens were divided into layers was visual. An attempt was made to isolate layers with large regions

of pure copper. After each specimen was partitioned, layers without any large regions of copper were

taken to have a fiber volume fraction of 0.75. This value approximates the maximum fiber volume

fraction that has been achieved for C-r/Cu with pressure infiltration casting. The fiber volume fractions of

all but one of the remaining layers were then estimated, and the fiber volume fraction of the remaining

layer was calculated based on the known overall fiber volume fraction of the specimen determined in the

manner described below. This process does not yield exact values for the fiber volume fraction of each

layer, however, as shown in Chapter 4, small changes in the fiber volume fraction of a single layer do not

significantly affect the predicted thermal expansion of the composite when the overall fiber volume

fraction of the composite is maintained. Future work may use optical techniques to obtain more precise

estimates for the layer fiber volume fractions.
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Figure 5.6: Actual specimens simulatod as laminates for use with MCLAM.



93

The overall fiber volume fra_ons of the specimens are given in Table 5.1.

Table 5.1:

Specimen Fiber Volume
Fraction

d7-0 0.55
d8-0 0.56
dl0-0 0.50
dl-90 0.66
d2-90 0.66

Fiber volume fractions of the experimental specimens

The fiber volume fractions were calculated from the mass balance,

+p.(1-v:)  51)

where Pc, tO f, and Pm ale the densities of the composite, fiber, and matrix, respectively, and where Vc

and Vf are the composite and the fiber volumes, respectively. The mass and volume of the composite can

be measured, and the density of the fiber and the matrix are known, so Vf can be calculated. This is

divided by the volume of the composite to yield the fiber volume fraction.

The measured thermal expansion for the Gr/Cu specimens is shown in Figure 5.7 and Figure 5.8.

The cause of the oscillatory nature of the longitudinal thermal expansion curves in Figure 5.7 has not been

conclusively determined, however, ignoring the oscillations, the data has been shown to be accurate (Ellis,

1994). The longitudinal specimens show reasonably good repeatability as do the transverse specimens. It

should be noted that specimen dl-90 showed evidence of cracking (not shown in Figure 5.4).

MCLAM was used to predict the thermal expansion behavior of the laminates shown in Figure

5.6 which simulate the actual microstructure of the longitudinal specimens. The results are given in

Figures 5.9, Figure 5.10, and Figure 5.11 for the dT-0, dS-0, and dl0-0 specimens, respectively. The

thermal expansion curves are plotted for stress-free temperatures of 100 °F and 1700 °F for three cases,

namely: a uniform fiber distribution; the simulation of the actual specimen microstructure; and the

simulation of the actual microstructure with slight fiber misalignment. The slight fiber misalignment was
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introduced by setting the fiber angle to 4 ° in the lower two layers of each laminate shown in Figure 5.6.

In specimen (18-0, the middle layer was partitioned into two halves for this purpose. The experimental

thermal expansion curves for each specimen are also included for comparison.

For all three specimens, simulating the actual microstructure and simulating the actual

microstruaure with slight fiber misalignment made only a slight difference when compared to the

uniform case for the stress-free temperature of 100 °F. The effect increased slightly for the stress-flee

temperature of 1700 °F and was most significant for the specimen dS-0. The effect of a slight fiber

misalignment was small. For all three specimens, the effect of the sUess-free temperature is far greater

than the effect of the nonuniform fiber distribution. As was shown in Chapter 4, fiber distribution

nonuniformity must be quite extreme to have an effect that rivals that of the stress-free temperature. Thus

little is gained in the attempt to accurately model the thermal expansion of Gr/Cu by simulating the

specimen microstmcture for the cases examined.
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Since the effect of the nonuniform fiber distribution is so small, taking nonuniform fiber

distribution into account does not improve the experimental/analytical correlation. Thus the effect of the

fiber distribution will not be discussed further. It should be noted that CCMICRON and MCLAM both

reduce to the method of cells with classical incremental plasticity for the uniform case, producing

identical results. Therefore only one model must be used to generate the results for the uniform cases

(MCLAM was used). Figure 5.9, Figure 5.10, and Figure 5.11 indicate that for the longitudinal thermal

response the differences between the two stress-flee temperatures is on the order of the oscillatory effects

m the experimental results. Thus, the stress-free temperature will be ignored in the discussion of the

monotonic longitudinal response, but in modeling the cyclic longitudinal response, both stress-free

temperatures will be used.

The models predict the longitudinal thermal expansion quite well up to a temperature of

approximately 700 °F, at which point the model predicts that the composite will expand rapidly, whereas

the measured response remains quite flat. This rapid expansion is predicted because the composite

longitudinal thermal response is fiber dominated. The axial CTE input data for the fiber indicates that the

fiber itseff expands rapidly in the longitudinal direction at higher temperatures (see Figure 4.1). The poor

experimental/analytical correlation at the higher temperatures indicates that the axial CTE data for the

fiber may be inaccurate for temperatures above 700 °F. If, for example, the axial fiber CTE is set to the

value at 700 °F for all temperatures above 700 OF, the predicted thermal expansion shown in Figure 5.12

is obtained for a composite with uniform fiber distribution. This case is plotted for a fiber volume fraction

of 0.55 and a stress-free temperature of 100 °F along with the experimental results. Obviously,

CCMICRON and MCLAM produce much better predictions for this case.

The transverse thermal expansion of dl-90 and d2-90 specimens was modeled treating the

specimens as uniform since the specimens show little fiber distribution nonunfformity (see Figures 5.4 and

5.5). The results are presented in Figure 5.13. The models overpredict the transverse thermal expansion

substantially. The measured thermal expansion curves for the two transverse specimens are closer to the

response of the fiber and the matrix. As discussed in Section 4.2, the predicted response is above the

response of the fiber and matrix because of the Poisson's effect that occurs due to compressive stress in the



98

0.en

.O.en

i

_ -0,06

;
-0.08

It
h
It

:' r :',, :,,

I I I I I

_ cl7-,0$5 %

.... cl8-0$8_

dlO-O _Y,

_ LawF:_lr _"I'Es S_

I I 1
0 200 400 _0 800 1000 1200 1400 I000

T_mure (F)

Figure 5.12: The measured longitudinal thermal expansion of PI00 Gr/Cu - 0.1 Cr and the predicted

therma] expansion for the case where the axial fiber CTEs are set to the value at 700 °F at every

temperature above 700 °F. A stress-f_e temperature of 100 °F was used.

2.S

1.5

1

| I
|

0.II

.... d2-m r:xmim..tJ J_'/ / 1

200 _ _ _ 1000 1_ 1_

I
_800

Figure 5.13: Transverse thermal expansion of 66 v/o PI00 Gr/Cu. Uniform fiber distribution and

experimental results are shown along with the response of the fiber and the matrix.



99

matrix in the longitudinal direction. The experimental results indicate that this effect is overpredicted.

To determine if the overprediction is due to stress relaxation occurring in the matrix of the actual

specimen which is not taken into account by classical incremental plasticity, the model of Williams and

Pindem (1994a) with Freed-Walker viscoplasticity (see Section 4.3), which allows stress relaxation in the

matrix, was used. This model predicts the transverse thermal expansion of specimens dl-90 and d2-90 to

be similar to the prediction of classical incremental plasticity. This is shown in Figure 5.14. Thus taking

stress relaxation effects into account does not significantly improve the experimental/analytical correlation

for the transverse thermal expansion response.
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Figure 5.14: Transverse thermal expansion of 55 v/o Pl00 Gr/Cu. Predictions are shown nsmg Freed-
Walker viscoplasticity and classical incremental plasticity along with the response of the fiber and the
matrix.
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5.2 Cyclic Thermal Expansion

When a composite undergoes plastic deformation during thermal loading, the thermal expansion

curve will not necessarily retrace the same path or return to the initial configuration if the thermal loading

is reversed. Plastic deformation is not a reversible process. Thus when Gr/Cu is heated to a temperature

beyond which plastic deformation occurs and then cooled, the thermal expansion curve forms hysteresis a

loop. This can be seen in Figure 5.15. The experimental thermal expansion curve for specimen d7-0 is

low during heating and high during cooling. It is desirable to have the ability to predict not only the

thermal expansion during heating, but also the thermal expansion during cooling and subsequent heating-

coolingcycles.

The predicted cyclic thermal expansion for a Gr/Cu composite with uniform fiber distribution

and the predicted cyclic thermal expansion for a Gr/Cu composite with the nonuniform fiber distribution

of Lain 1 (see Figure 4.23) are also shown in Figure 5.15. Lain 1 is included to show an upper bound of
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Figure5.15:Cycliclongitudinalthermalexpansionof55 v/oPl00 Gr/Cu. Experimentaldataford7-0,

thepredictedresponsefortheuniformcase,and thepredictedresponseoftheLain I configurationare

shown. A stress-free temperature of 100 °F was used.
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the effect that nonuniform fiber distribution has on the cyclic thermed expansion of Gr/Cu. The predicted

curves were generated with MCLAM, and as discussed in Section 5.1, the axial CTE of the fiber was set

equal to the value at 700 °F for every temperature above 700 °F. This was shown to more accurately

model the heating thermal expansion curves for the specimens that were tested. A stress-free temperature

of 100 °F was used to generate the predicted curves in Figure 5.15.

As was shown in Section 5.1, the uniform model with the altered fiber CTEs compares

reasonably well with the experimental results for the heating portion of the curve. The heating curve for

the Lain 1 configuration is raised slightly and thus compares more favorably with experimem at low

temperature and less favorably at high temperature. In both cases, the model predicts that the cooling

curve for the cycle will be lower than the heating curve of the cycle. This conflicts with the experimental

data, and the predicted cooling curves for the cycle are vastly different from what is observed

experimentally. The predicted cooling curve for the Lain 1 configuration is lower than that of the uniform

case and is thus even further from the experimental cooling curve. Furthermore, the experimental data

shows that al_cr the thermal cycle, the specimen nearly returns to its original length while the model

predicts a substantial negative change in length for both cases.

Figures 5.16 and 5.17 show the predicted longitudinal thermal expansion for three cycles for the

uniform case and the Lain 1 configuration, respectively, using a stress-free temperature of 100 °F. Both

cases exhibit an increasing amount of deformation at 1500 °F with each additional cycle. This

"ratcheting" behavior causes the thermal expansion curve of each subsequent cycle to appear higher at the

high temperatures. This sort of behavior has been observed experimentally in Gr/Cu with no chromium

added to the matrix (DeVincent_ 1994a). The effect was reduced significantly by adding chromium to the

matrix, and thus is thought to be the result of debonding. Figures 5.16 and 5.17 indicate that cyclic

ratcheting may occur in the presence of perfect bonding. Comparing the cyclic response of the uniform

case and the Lain 1 configuration indicates that the ratcheting effect can be greater for composites with

nonuniform fiber distribution.

Figures 5.18 - 5.20 differ from Figures 5.15 - 5.17 only in that the stress-free temperature used in

the latter set of figures is 1700 °F rather than 100 °F. Figure 5.18 shows that the predicted heating
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Figure 5.19: Cyclic longitudinal thermal expansion of 55 v/o P100 Gr/Cu. The predicted response for the

uniform case using a stress-free temperature of 1700 °F is shown.
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Figure 5.20: Cyclic longitudinal thermal expansion of 55 v/o PIO0 Gr/Cu.
Lain 1 configuration using a stress-free temperature of 1700 °F is shown.

The predicted response for the

portion of the thermal expansion curves for a stress-free temperature of 1700 °F does not agree with

experiment as well as for a stress-free temperature of 100 °F. Also, the predicted response for the Lam 1

configuration in this case deviates to a greater extent from the uniform case during the heating portion of

the cycle.

The thermal expansion of the two configurations over three cycles using a stress-free temperature

of 1700 °F, shown in Figures 5.19 and 5.20, exhibits the effect of ratcheting to a greater extent than was

the case with a stress-free temperature of 100 °F. It should be noted that even when a great deal of

ratcheting is predicted at the high temperatures, the curve returns to nearly the same location at the end of

each cycle (see Figure 5.20).

The transverse cyclic thermal expansion of Gr/Cu will not be addressed because the transverse

cooling curve is similar to the heating curve as are subsequent cycles. The significant observation that can

be taken from this examination of cyclic thermal expansion is that the model predicts the thermal

expansion loop of Gr/Cu to have the opposite direction of the loop observed experimentally. Thus a
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mechanism that is not taken into account in MCLAM must be present Further research is warranted in

this area.
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Two micromechunical models were developed for characterizm"g the thermal expansion of Gr/Cu

composites with nonuniform fiber distributions. A previously developed muRiple concentric cylinder

model was funber extended to allow each cylinder to be modeled as a two-phase composite. This model

(CCMICRON) was used to simulate the thermal expansion behavior of Gr/Cu with a radiaUy nonuniform

microstructure by assigning each concentric cylinder an independent fiber volume fraction. The second

model developed (MCLAM) consisted of an extension of classical lamination theory to include inelastic

behavior of the matrix phase. Since the fiber volume fraction of each lamina is user-defined in MCLAM,

this model was used to examine the thermal expansion beha_or of Or/Cu with nonuniform microsmlcture

in the through-thickness direction. Additionally, MCLAM includes a user-defined fiber orientation in

each lamina which is taken into account by the lamination theory equations, thus allowing one to

investigate the effect of fiber misalignment on the thermal expansion.

The features of both CCMICRON and MCLAM are quite similar. In both models, the method of

cells micromechanics model is used to evaluate the effective temperature-dependent properties of the

uniform regions. In addition, the inelastic constitutive theory (classical incremental plasticity theo_) is

applied to the matrix phase at the micro-level in both cases. Thus for uniform fiber distributions
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CCMICRONand MCLAM reduce to the method of cells with classical incremental plasticity. Because of

the presence of inelastic strains in the matrix, the governing set of simultaneous equations in the models

are implicit and thus must be solved iteratively. The iterative solution procedure developed by Mendelson

(1983) is thus used.

Incorporating plastic behavior of the matrix into the models results in a more difficult analytical

solution and increased computational time. However, it was shown in Section 4.2 that the effect of matrix

inelasticity on the thermal expansion of Gr/Cu is significant. Disregarding yielding and subsequent

plastic flow in the matrix results in unreliable predictions.

To account for residual stresses in the composite and processing-induced yielding in the matrix,

the concept of a stress-free temperature was employed during the implementation of both models. The

procedure involved simulating a cool-down from an assumed stress-free temperature prior to beginning

the simulation of a thermal expansion test. It was found that, like matrix plasticity, the assumed stress-

free temperature has a major effect on the thermal expansion of Gr/Cu. Actual values for the stress-free

temperature could not be determined. Thus 1700 °F and 100 °F were chosen as approximate upper and

lower bounds on the tree stress-free temperature.

In order to examine the effect of radially nonuniform fiber distribution on the thermal expansion

of Gr/Cu, two extreme cases were considered using CCMICRON. The first case was a core with a low

fiber volume fraction surrounded by a cylinder with the highest possible fiber volume fi,action for

composites reinforced with continuous cylindrical fibers. The second case was the opposite; a core with

high fiber volume fraction surrounded by a cylinder with low fiber volume fraction. These cases

represented an extreme because the change in fiber volume fraction was large and abrupt.

Results indicated that for the thermal expansion of Gr/Cu, radially nonuniform fiber distribution

was not significant, even in the most extreme cases mentioned above. Through farther investigation it

was found that treating the fiber as isotropic rather than transversely isotropic by setting the transverse

CTE and Young's modulus to the axial values increased the effect of the nonuniform fiber distribution

considerably. Thus the thermal expansion behavior of a composite with a large transverse CTE mismatch
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and a large transverse Young's modulus mismatch could be significantly affected by radially nonuniform

fiber distn'bution.

MCLAM was used to examine the effect of fiber distribution nonuniformity m the through-

thickness direction on the thermal expansion of Gr/Cu. This type of fiber distribution more closely

approximates the situation in real Gr/Cu composites. Several laminate configurations were considered

using MCLAM. The one that exhibited the largest effect of the fiber distribution nonuniformity was an

unsymmetric two-ply laminate with one ply having high fiber volume fraction and one ply having low

fiber volume fraction. Like the cases examined using MCLAM, this case represents a large and abrupt

change in fiber volume fraction. In addition, since this laminate is unsymmetric, bending occurs when it

is subjected to thermal loading.

Resttlts for MCLAM indicated that when there is significant bending as there is for the laminate

described above, the effect of the nonuniform fiber distribution on the thermal expansion is significant.

Reducing or eliminating the bending significantly reduces the observed effect. For the cases in which

bending is induced, the effect of the nonuniform fiber dism_oution is of approximately the same magnitude

as the effect of the choice of stress-free temperature

Slight fiber misalignment proved to have different effects on the thermal expansion depending on

the stress-free temperature used. For a low stress-free temperature, the fiber misalignment had little effect

on the longitudinal thermal expansion but a noticeable effect on the transverse thermal expansion. For a

high stress-free temperature, the opposite was true. This was explained by examining the then'oal

expansion of several symmetric angle-ply composites at high and low stress-free temperatures. It was

found that for a low stress-free temperature the longitudinal thermal expansion at low ply angles was less

sensitive to changes in the ply angle than was the case for a high stress-free temperature. At high ply

angles, the low stress-free temperature case was more sensitive to changes in the ply angle than the high

stress-free temperature case. Thus, when considering slight fiber misalignment, using a low stress-free

temperature causes greater sensitivity in the transverse direction (which is the same as a slight change in

ply angle at a high ply angle) while using a high stress-free temperature cause greater sensitivity in the

longitudinal direction.
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Experimental thermal expansion data were generated for three longitudinal and two transverse

specimens. The actual microstructure of the longitudinal specimens was inhomogeneous while the

transverse specimens exhibited nearly uniform fiber distribution. Results generated using MCLAM

indicated that the simulated microstructure of the longitudinal specimens had little effect on the predicted

thermal expansion of those specimens. Adding slight fiber misalignment likewise had little effect.

Oscillations in the experimental data were much greater than the effect of the nonuniform fiber

distribution and even the choice of stress-free temperature.

The model with uniform fiber distribution agreed reasonably well with experiment m the

longitudinal direction up to a temperature of approximately 700 °F at which point the predicted response

increased rapidly while the measured response remained reasonably fiat. This discrepancy called into

question the reliability of the high temperature axial CTEs of the graphite fibers since at these

temperatures the measured longitudinal thermal expansion of the composite was far less than that of both

the fiber and the matrix. To compensate, the axial fiber CTEs were set to the value of the fiber axial CTE

at 700 °F, and much better agreement was obtained. The predicted Wansverse thermal expansion curve

for Gr/Cu was significantly higher than the experimental curve for reasons that have not been determined.

The longitudinal cyclic thermal expansion of Gr/Cu was modeled using the altered high

temperature axial fiber CTEs and compared to the single cycle experimental response. While the heating

portion of the predicted response was in good agreement with the experimental response, the cooling

portion was incorrectly predicted. In particular, experiment shows that the direction of the cyclic thermal

expansion loop is the reverse of what is predicted. Thus a mechanism that is unaccounted for in the

model may be operative. This requires further investigation. Additional cycles were generated, and the

predicted response exhibited "ratcheting" behavior that has been observed experimentally in Gr/Cu.
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Transversely Isotropic Elastic Layers

kll --

(c. +c..)r,_,-(G.-C..) r:
rk_l

k22 =

(G +G)r,-(G-G) rL'
rk

k13 =-C_o

k_ = Ge

:, =C,_a.. +(G +C.)a,,

A =-[G,a_ +(G. +c.)a.]

_b,, = -2 rc C,,ork_ ,

_b2: = 2 zC.or ,

_,= ,_C=(r: - rL_)

f2= -z(C= a= + 2G.a..)(r_ - r__,)

Transversely Isotropic Inelastic Layers (elastic contributions same as above)

2C°°r* G2 -G-k
g,- rd_rd_l

g2 _

[(C. +G)rk-(Ce,-G)rd-t]G_,
"' J +G

where;,
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(G +c.) . , , r ;"---. (G-C.): -- _, r dr +-/) _7 +

_ r,_l ifx,e,r

1 Z _(rk-')r -1
-2_ zSr

"G(r)= (C _) [ Z (C. +C a) d_r dr ÷

.

[[ )1 .--, G .. rL,-1 -G +1
i=x.u,r

r,

YI=2rc_ZC,_:r'dr'

r_.: i=X,_,r

Orthotropic Elastic Layers

kll --

Fk .L

zc _r,_*-'- (c. - zG)(Ca,+ .zk-i
rk_l

-2ZGr/_i'¢

-2zGrL, rt-'
k,,= r:* -r:_

k22 =

(G +zc_)_*-' - (c.- _G) _L_'
rk

k,,=-[G. +(G, +G)H, - zG,)(r__, r, ]
(c_ +xc.)(r:_ _-' _*"'" (c_ _-' _*'-_)H,- rk__rk J_

r2_ _ r2k__' 2_ 2,rk -rk_ l
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/,23=c.. +(G. + C..)H,
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Reduced Stiffness Equations:

k k
v2,E,

Q_=

Vector Rotation Equations:

--[-
._,_j _'_J

_f

r_
=[r] _5

&
2

where _ = T, p, total

cos 20 sin 20 2sinOcos0]
[T] = sin 20 cos 20 -2sin 0cos0|

-sin0cos0 sin0cos0 cos 20-sin 20J

Reduced Stiffness Rotation Equations:

Qn--k= Q_ cos' 0 + 2(Q,k2 + 2Q_6) sin 20eos20 + Q_ sin'a

_k k
Q,2 =(Q_ +Q;2-4Q_) sin20cos20+ Q,_(sin' 0+ cos 40)
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_=_=Q,__m'e+2(Q,_+Wd,)_we_ee+Q_cos'e

_:=(Q:,-Q_-2_)_i_'O_o_O+(Q_-Q,',+2_)_inO_os'o

=(Q:,+Q_- 2Q__- 2Q_s)sin20cos_O+Q_(sin'O+cos4O)
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L

4=c_

Ao= C; _- A, = Cg

&=C_

/,

--,= ]1

_=c_ +_;;_

s, =c;= _,,+c;,._t_,,_(¢,---,2,,-,,
¢

=h 1_. _ -c;_,_ +(c_ c_)_""

,," - 0:) + [C f
s,=(c;._-c_)_,,+c:. _=+cr_Z-_,_-(FZ-d),,r-(cr,-c::_<, , ,,-q)47"

s, =q " _-L, +c7="-l,l_e_,-(q- q)(,;_") -_;,,c_,,)

where gr = G_ + (C'_ + C_)d2 i=f,m

DT_ =-AsA842 - A6AgAu
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where
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I0 A1 A 2 A! I

A, o A_
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A1o A n 0 A n
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where __* is the effective CTE vector, _a" is the matrix CTE vector, _ is the fiber CTE vector, _S* is the

effective compliance matrix, S mis the matrix compliance matrix, and _Sf is the fiber compliance matrix.

C;l -'bll

C_: = C;3 - b'2 + b13
2

C_3 = b2:+b33 + 3623 b66
8 4 2

Vb_ --

,.. f ,.cz{cz[h(v,_+v,,)+_(v,_+v,,)]+c=_(v,,+v,,)}
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